
Cameron Allen Mastering Games with AI 23 March 2018

Introduction

Since its inception, the field of artificial intelligence (AI) has sought to measure the intelligence of
machines by comparing their performance against that of humans. In Alan Turing’s seminal paper
[1], he suggested that a good way to evaluate machine intelligence is to have machines play games
against human adversaries. Intuitively, the argument is that if greater intelligence causes one to be
better at winning games, then for a machine to win a game against a human, it must have greater
intelligence (at least at playing that game). This conclusion seems especially valid for two-player,
zero-sum games, where one player wins if and only if the other loses. A great deal of AI research
has thus focused on building AI systems that can play two-player, zero-sum games at a high skill
level.

AI approaches to game-playing can largely be grouped into two categories: classical techniques (also
known as Good Old-Fashioned AI, or GOFAI), and connectionism. Classical techniques tend to
focus on explicitly representing abstract knowledge about the game in some sort of knowledge base,
and then efficiently searching through that knowledge when it’s time to select the next move. In
connectionist approaches, the system’s knowledge is represented implicitly within one or more neural
networks, and these networks process the game state as input before outputting an evaluation of the
available moves. Each approach has its advantages, and each has led to super-human performance
at some games. In this paper, we will look at some major milestones where AI systems first beat
humans at checkers, chess, and backgammon; and we will use these systems to discuss some of
the strengths and weaknesses of each approach. Then we will look at recent work on playing Go
that combines deep neural networks with classical AI methods to achieve super-human performance
where neither approach had previously been able to on its own.

Chess & Checkers

The concept of a game-playing machine is at least as old as the late 18th century, when Wolfgang
von Kempelen tried to convince people that his chess “automaton” was more than just a person
hiding in a box [2]. However, it wasn’t until nearly two hundred years later, with the birth of
computer science and artificial intelligence, that substantial progress started to be made towards
a more legitimate version. In 1950, Claude Shannon introduced several important strategies for
distilling games into computation, with a focus on chess in particular [3]. He formally defined
an evaluation function, which represents whether or not a given board position can be won, and
he proposed several strategies for learning approximate versions of such functions. Shannon also
explicitly described the optimal strategy for a two-player, zero-sum game: players select actions
that alternate between maximizing and minimizing the evaluation function of the resulting position.
Shannon pointed out that, in chess, it was infeasible for a computer to search for such an optimal
strategy using brute-force, since that would require looking at approximately 10120 possible games
[3]. Instead, he proposed using heuristics (such as the number and location of pieces) to guide the
search towards “good” strategies.

Subsequent research into AI game-playing built on Shannon’s foundations, and adapted these gen-
eral principles to other games. Arthur Samuel chose to focus on the game of checkers instead of

1



Cameron Allen Mastering Games with AI 23 March 2018

chess, since it was comparatively much simpler (approximately 1031 possible games [4]), while at
the same time still featuring many of the aspects of chess that made it such an interesting problem
[5]. Samuel explicitly represented the problem as a search tree, where nodes corresponded to board
positions, and the levels of the tree alternated between maximizing and minimizing the evaluation
function, as in Shannon’s formulation [3]. Samuel’s program exploited this tree structure with two
different types of learning, which he called “rote learning” and “learning by generalization” [5]. The
former memorized board positions that the program had previously encountered, along with their
corresponding evaluations and frequencies, in order to greatly increase the depth of the search. The
latter involved a procedure for modifying the weights of the evaluation function, both to imitate
expert games, and to improve performance when the program played against itself. A later version
of Samuel’s program [6] added a technique called “alpha-beta pruning,” which further exploited the
structure of the search tree by ignoring certain subtrees based on the assumption that the opponent
would play optimally.

After Samuel’s program achieved some modest success against amateur human players, research
attention largely shifted from checkers to other games. In 1965, Richard Bellman proposed using
dynamic programming to build endgame databases, where the search tree was built up backward
from completed games [7]. In the late 1960s, the Greenblatt chess program [8] introduced the
idea of using hash tables to avoid repeated searching of identical positions. In chess (and many
other games), it is possible to reach a given board position via multiple distinct sequences of moves
or transpositions. Normally, each copy of the position would need to be searched independently,
but with hashing, the results of the first search can be saved in a transposition table for later use.
Greenblatt also added a table of expert “book openings” to aid the program during the beginning of
the game [8]. A few years after Greenblatt’s work, Alfred Zobrist proposed an improved method for
building transposition tables [9]. Zobrist hashing used XOR operations of piece locations to create
a hashing scheme that could recognize all possible board positions while avoiding hash collisions
between them. These improvements and others gradually improved the performance of chess- and
checkers-playing programs. However, despite all of this progress on game-playing machines, humans
retained their world-champion titles in both checkers and chess into the mid-1990s, at which point,
they abruptly lost both.

Chinook & Deep Blue

The first computer program to become a world champion in chess or checkers was the Chinook
checkers program [10]. In 1994, Chinook played six games (drawing each time) against the World
Checkers Champion, Marion Tinsley, before Tinsley was forced to withdraw from the match due
to health problems [10]. Chinook subsequently defended its title a year later, against number-two
player Don Lafferty. Meanwhile, a team at IBM was preparing their chess engine, Deep Blue [11],
for a match against the World Chess Champion, Gary Kasparov. By the end of 1997, Deep Blue
had claimed that title for itself as well [12].

The Chinook system drew mainly on techniques employed by previous chess and checkers programs.
It combined tree search with alpha-beta pruning and heuristics to guide the search towards more
useful lines; it used a hand-tuned evaluation function that incorporated a variety of human-designed
features; it contained an extensive endgame database for all positions involving eight pieces or fewer;

2



Cameron Allen Mastering Games with AI 23 March 2018

and it featured an opening book that was carefully constructed to improve Chinook’s early-game
performance against Tinsley [10]. Apart from incremental improvements to these methods, two
main innovations set Chinook apart from its predecessors. First, Chinook ran on substantially
improved hardware that enabled significantly faster and deeper parallel search [10]. Second, the
team added pre-computed “tactical tables”, which extended the search in certain key positions
and helped correct an error where Chinook would sometimes give up two pieces in exchange for
one [10]. According to the team, Chinook succeeded where other programs had failed, because
it “searched better and deeper, evaluated positions better, had access to more and better-quality
endgame databases, and had access to 12 times as much (and better-quality) opening knowledge”
[10].

Likewise, there were several aspects of Deep Blue that enabled it to outperform previous chess
engines. First, it ran on dedicated, special-purpose hardware, designed specifically for playing chess
[12]. The Deep Blue hardware enabled a massively parallel, non-uniform search that could dynami-
cally increase search depth for important positions [12]. Additionally, Deep Blue incorporated vast
amounts of domain knowledge. Its non-uniform search was supported by an incredibly complex
evaluation function consisting of approximately 8,000 human-designed features, where many of the
weights were tuned by hand [12]. Deep Blue also used an opening book of 4,000 positions (manually
created), a large endgame database for all positions involving five pieces or fewer, and an “extended
book”, compiled from 700,000 expert games, which was used as a heuristic to guide the search [12].

Chinook’s and Deep Blue’s victories represented important milestones for the field, and decisive
victories for Classical AI. Their super-human performance was the result of decades of refinement
and iteration on the same core idea: represent game knowledge explicitly, and then search through
that knowledge as efficiently as possible to decide on the next move.

Legacy and Limitations

Building on their victory in 1995, Chinook’s authors shifted their focus to solving the game of
checkers, that is, achieving perfect play. In 2007, they formally proved that if both sides play
optimally, the game is a draw [13]. Their result used Chinook’s forward search with alpha-beta
pruning, plus an improved backward search involving an even larger 10-piece endgame database, as
well as a second type of forward search called proof-number search [4]. Proof-number search starts
from the initial board position and assigns each subsequent position a proof number, a measure of
how many more positions need to be considered in order to solve the entire tree. The algorithm
then repeatedly checks the board position with the smallest proof number until the tree is solved [4].
By proving that checkers is a draw, the authors effectively secured Chinook’s title as the permanent
world champion — it literally cannot lose.

Meanwhile, in the world of chess, the techniques behind Deep Blue inspired an array of competing
chess engines. All of the current top-rated engines are far more powerful than Deep Blue, and run
on a small fraction of the hardware. The current best engine, Stockfish 9 [14], has an Elo rating of
about 3450 [15]. By comparison, Magnus Carlsen, the top human player, has an Elo rating of 2843
[16]. This difference translates to approximately a 97% win probability for Stockfish (with nearly
all of the remaining probability being a draw) [17].

3



Cameron Allen Mastering Games with AI 23 March 2018

While it’s safe to say at this point that computers have far surpassed human ability in both chess
and checkers, it’s worth pointing out some limitations of Classical AI techniques. First, while the
Chinook team was able to solve checkers, their approach is hard to scale to larger problems. Chess,
with its much larger game tree, remains far from solved [13]. Second, and perhaps more importantly,
the chess engines that are descended from Deep Blue rely on the same GOFAI approach: human-
designed evaluation functions, endgame tables, and parallel, heuristic-driven, forward search with
pruning. These methods, while incredibly effective for chess and checkers, must be completely
redesigned for other games. The version of Deep Blue that defeated Kasparov was a supercomputer
capable of considering 100-200 million positions per second [12], and yet, tragically, all it could do
was play chess.

Backgammon

Unlike chess and checkers, which are completely deterministic games, backgammon involves an
element of chance. Every turn, players roll dice to determine which moves they can make, and
then they attempt to choose the best move available. This randomness makes backgammon a more
difficult game to analyze. Despite backgammon only having about as many board positions as
checkers, the dice make it so that the branching factor at each position is approximately 400 (versus
about 35 in chess and 8 in checkers), which means deep forward search is computationally intractible
[18, 19]. Moreover, backgammon cannot be solved in the same sense that checkers was solved: even
the best backgammon strategies can only win in expectation. There’s always some chance that the
dice will favor the opponent. It may come as a surprise then, that backgammon was actually the
first game in which a world champion was defeated by a computer program.

One of the earliest explorations into computer backgammon was Hans Berliner’s BKG program
[18], the same program that would go on to defeat the world champion, Luigi Villa, in 1980 [19].
Berliner quickly recognized that forward search in backgammon would be difficult, and so, in true
GOFAI fashion, he focused his attention on developing a powerful evaluation function and extensive
endgame tables. To achieve good performance, Berliner found that the evaluation function needed
to be able to represent non-linear relationships between its various features [18, 19]. However,
manually adjusting the parameters of such a complex evaluation function turned out to be difficult.
To simplify the problem, Berliner partitioned the set of board positions in to several smaller “state-
classes”, and then linearly combined the features within each state-class [18]. This effectively added
a crude form of overall non-linearity while still being feasible to tune by hand. However, in some
board positions, the state-classes introduced strange edge-case behavior, since different possible
moves could land in distinct state-classes [18]. To handle these situations, BKG approximated the
expected value of each move by combining the evaluation functions for the different state-classes,
and then it would select whichever move had the highest expected value [18].

While minor improvements to these techniques were enough for BKG to beat Villa 7-1 [19], the
victory was less meaningful than it seemed. Although BKG technically won the match, this was in
large part due to chance, rather than greater skill. According to Berliner, “The analysis confirm[ed]
that Villa, as expected, [was] certainly the better player” [19]. Berliner went on to say, “A match
to 7 points is not considered very conclusive in backgammon. A good intermediate player would

4



Cameron Allen Mastering Games with AI 23 March 2018

probably have a 1/3 chance of winning such a match against a world-class player” [19]. From a
historical perspective, the win was significant, but from a statistical perspective, it was not.

TD-Gammon

Achieving a statistically significant victory over a world champion proved more difficult. While
Berliner and others continued to apply classical techniques, a different line of research was achieving
success with connectionist approaches. By 1992, Gerald Tesauro’s TD-Gammon [20] was nearly
matched in skill with top human players. The program had previously played a series of matches
against human experts (including four world champions), where it performed at an advanced level
for more than 80 games [20]. Then, in a 40-game match against former World Champion Bill
Robertie, TD-Gammon lost by just a single point [20]. Although TD-Gammon did not technically
win a championship, its skill in these games represented a significant improvement over BKG [20].

There were two fundamental breakthroughs that allowed Tesauro’s program to compete with top
human players. The first was the backpropagation learning rule [21], which allowed for efficient
training of multi-layer neural networks. These larger neural networks could represent the complex,
non-linear evaluation functions needed for backgammon. By enabling the evaluation function to
be tuned automatically, rather than by hand, backpropagation effectively solved the parameter
adjustment problem that Berliner had observed with BKG.

The second breakthrough was a reinforcement learning technique called “Temporal Difference”
learning [22] (or TD). TD measures differences (or errors) in the predictions of a model (e.g. a
neural network) from one timestep to the next, and then updates the parameters of the model to
make the first prediction more like the second. This type of update is a natural fit for backgammon,
where deep search is intractible, but where searching one or two steps ahead is perfectly reasonable.
TD-Gammon used a variation of TD learning called TD(λ) [22], which is a generalization that
takes multiple previous predictions into account and scales their contribution to the update based
on recency. The λ parameter controls the relative importance of short-term TD-errors versus long-
term TD-errors.

TD-Gammon combined these two methods with Monte-Carlo “rollouts” in order to train the network
[20]. In each rollout, the program would play a single game to completion, keeping track of the
moves it had made. After the game was over, the program would modify the network weights using
TD(λ) and backpropagation. Subsequent games used different random seeds, so that over a large
number of games, the network could learn to approximate the expected value of each move [20].

One major difference that separated TD-Gammon from previous game-playing programs was that
its neural networks could be trained entirely from self-play. Given only the raw board position, the
program could automatically discover features that were good enough to compete against previous
programs [20]. And while the version that competed against humans did incorporate a few expert
features that summarized important details about the board position, TD-Gammon did not use any
opening books, endgame databases, or even expert games [20]. It was essentially self-taught.

5



Cameron Allen Mastering Games with AI 23 March 2018

Legacy and Limitations

Since the branching factor in backgammon is so large, TD-Gammon could only look two moves ahead
at each board position. This meant that it couldn’t quite match the experts on tactical play [20].
However, due to the strength of its learned evaluation function, the program’s positional knowledge
of the game was often superior to human masters [20]. After the matches in 1992, professional players
noticed that in some positions, TD-Gammon would select a move that challenged the conventional
human wisdom [20]. In several cases, detailed Monte-Carlo rollout analysis confirmed that TD-
Gammon’s move choice was in fact better than the previously accepted “best” human strategy, and
professionals changed how they played as a result [20].

TD-Gammon was able to improve on decades of human study largely because it was self-taught.
The only expert knowledge it received, apart from the rules of the game, was a set of board
features—statistics, essentially—about things like the number and location of pieces [20]. The
program then learned how best to combine these features (along with raw board positions) and
determine the relative importance of each [20]. Because the program never saw opening books,
endgame databases, or expert games, it was effectively free from human bias. It played strategies
not because they were popular, but because they were actually the best in a statistical sense.

The success of TD-Gammon inspired a number of modern backgammon programs (such as GNU
Backgammon [23]) that all essentially share the same basic architecture: neural network evaluation
functions trained by Monte-Carlo rollouts and TD, combined with a shallow forward search to
enhance tactical play. Despite substantial improvements in computing hardware, backgammon
programs are still computationally limited to approximately 4-move forward search. As a result, this
architecture is fairly specialized for backgammon—other board games generally require much deeper
forward search. While the core techniques in TD-Gammon can certainly be applied elsewhere, other
games demand additional strategies to achieve world-class skill.

Go

The game of Go is immensely complex. It is played on a 19×19 board, which means the branching
factor rivals that of backgammon, and the game tree is twice as deep as chess. With roughly 10360

possible board positions [24], Go is in a class of its own. Expert play requires a careful mix of
short-term tactics and long-term strategy, and an almost qualitative analysis of board positions
[24]. When Chinook, TD-Gammon, and Deep Blue were all winning against world champions, Go
programs could not even win against human beginners [25]. In 2014, the best Go programs, using
all the techniques described above (and more), had still only reached the level of an intermediate
amateur [24]. True mastery of the game was thought to be beyond the reach of computer programs
for at least another decade [24].

Then, in 2015, Google DeepMind made history when their program AlphaGo [24] beat European
champion Fan Hui 5-0. Six months later, AlphaGo won 4-1 against Lee Sedol (winner of 18 interna-
tional titles), and the following year, it defeated the World Go Champion, Ke Jie, 3-0 [24]. Almost
overnight, DeepMind’s program had outsmarted the best human players at one of the world’s most
challenging games.

6



Cameron Allen Mastering Games with AI 23 March 2018

AlphaGo

In many ways, AlphaGo represented a marriage of classical and connectionist techniques. Rapid
advances in deep neural networks allowed AlphaGo to learn rich representations of the board position
and a powerful evaluation function. At the same time, efficient tree-search techniques, combined
with Monte-Carlo rollouts, enabled the program to consistently select good moves, despite the
massive size of Go’s game tree.

AlphaGo’s neural networks looked quite different from the ones in TD-Gammon. First, they were
orders of magnitude larger [20, 24]. Recent advances in deep learning had allowed for efficient
training of complex networks with significantly more layers than their predecessors [26]. These
deeper networks were capable of learning powerful hierarchical representations of their inputs, and,
with the advent of cheap, commercial GPUs, they could also learn those representations quickly.
The second improvement since TD-Gammon was that AlphaGo’s networks were “convolutional”.
Convolutional neural networks [26] make strong assumptions about how their weights should be
spatially related, and these assumptions work well for grid-based games like Go. At each layer, the
network learns to process the input in small 2-D patches, and then it applies the same transformation
to each patch. Layers of convolutions allow the network to learn small, local features that apply
anywhere on the board, as well as more abstract high-level features that describe the overall position.
AlphaGo was comprised of multiple convolutional neural networks: a policy network was trained
to predict the next move in a set of human expert positions, then trained via self-play to maximize
win probability; and a value network was trained to predict the win probability of the improved
policy network [24].

To cope with Go’s large branching factor, AlphaGo needed to rely on Monte-Carlo evaluation similar
to what was used in backgammon. However, while a shallow four-move forward search is fine for
backgammon, it is not nearly deep enough for the intense tactical play and long-term strategy of Go.
Other leading computer Go programs achieved deeper search using an algorithm called Monte-Carlo
Tree Search (MCTS) [27]. MCTS is an efficient, heuristic-based, forward search algorithm that is
in some ways similar to proof-number search. MCTS reduces computation by evaluating the most
potentially useful positions in the game tree first, based on how likely each position is to lead to a
win, plus a bonus term that prefers relatively unexplored positions. In AlphaGo, the selected board
position is evaluated by running a Monte-Carlo rollout and combining the result with the value
network’s prediction; then the search tree is updated and the process repeats [24]. Since MCTS
hinges on being able to execute these rollouts quickly, AlphaGo also had a much smaller, faster
version of the policy network for selecting moves during the rollouts [24].

Looking Forward

At its core, AlphaGo relied on techniques as old as AI itself: heuristic-based forward search, plus a
powerful evaluation function. Yet its mastery of Go also came from its ability to represent knowledge
implicitly in state-of-the-art deep neural networks. The team at DeepMind had found a way for
classical and connectionist techniques to complement one another, producing a system that was
much more capable than the sum of its parts.

7



Cameron Allen Mastering Games with AI 23 March 2018

After AlphaGo’s victories against Lee and Ke, DeepMind developed another version of the software,
called AlphaGo Zero [28], which simplified the neural network architecture and learned entirely
from self-play. Starting from just the rules of the game, AlphaGo Zero was able to defeat the
most advanced version of AlphaGo, 100-0 [28]. Then, to show that their approach could generalize,
DeepMind subsequently developed a third program, AlphaZero [29], which played Go, chess, and
shogi (Japanese chess), all at a level that was better than any previous program.

AlphaGo and its successors represent the state of the art in computer game-playing, and their
abilities far exceed those of human experts. Still, it’s important to note that—like Deep Blue—
AlphaGo is designed for a specific task: playing Go. Even AlphaZero is limited to playing whichever
one of the three games it was trained for. Perhaps it’s time for AI to go beyond games as a measure
of machine intelligence. While there are still some games (e.g. StarCraft [30]) where humans play
better than machines, games will always represent an overly simplified environment for testing
AI: the rules and the goal are both well-defined and pre-determined. For AI systems to truly be
intelligent in the way that humans are, we may need to take them out of their simplified game
environments and see how they do in the real world.

References

[1] Alan M Turing. Computing machinery and intelligence. Mind, 59(236), 1950.

[2] Claude E Shannon. A chess-playing machine. Scientific American, 182(2):48–51, 1950.

[3] Claude E Shannon. Programming a computer for playing chess. The London, Edinburgh, and
Dublin Philosophical Magazine and Journal of Science, 41(314):256–275, 1950.

[4] Louis Victor Allis et al. Searching for solutions in games and artificial intelligence. Rijksuni-
versiteit Limburg, 1994.

[5] Arthur L Samuel. Some studies in machine learning using the game of checkers. IBM Journal
of research and development, 3(3):210–229, 1959.

[6] Arthur L Samuel. Some studies in machine learning using the game of checkers. II - Recent
progress. IBM Journal of research and development, 11(6):601–617, 1967.

[7] Richard Bellman. On the application of dynamic programing to the determination of optimal
play in chess and checkers. Proceedings of the National Academy of Sciences, 53(2):244–247,
1965.

[8] Richard D Greenblatt, Donald E Eastlake III, and Stephen D Crocker. The greenblatt chess
program. In Proceedings of the November 14-16, 1967, fall joint computer conference, pages
801–810. ACM, 1967.

[9] Albert L Zobrist. A new hashing method with application for game playing. ICCA journal,
13(2):69–73, 1970.

[10] Jonathan Schaeffer, Robert Lake, Paul Lu, and Martin Bryant. CHINOOK the world man-
machine checkers champion. AI Magazine, 17(1):21, 1996.

8



Cameron Allen Mastering Games with AI 23 March 2018

[11] Feng-hsiung Hsu, Murray S Campbell, and A Joseph Hoane Jr. Deep blue system overview.
In Proceedings of the 9th international conference on Supercomputing, pages 240–244. ACM,
1995.

[12] Murray Campbell, A Joseph Hoane Jr, and Feng-hsiung Hsu. Deep Blue. Artificial intelligence,
134(1-2):57–83, 2002.

[13] Jonathan Schaeffer, Neil Burch, Yngvi Björnsson, Akihiro Kishimoto, Martin Müller, Robert
Lake, Paul Lu, and Steve Sutphen. Checkers is solved. science, 317(5844):1518–1522, 2007.

[14] Stockfish - Open Source Chess Engine. https://stockfishchess.org/.

[15] CCRL 40/40 Rating List. http://www.computerchess.org.uk/ccrl/4040/rating_list_

all.html.

[16] Carlsen, Magnus - FIDE Chess Profile. https://ratings.fide.com/card.phtml?event=

1503014.

[17] Elo Win Probability Calculator. https://wismuth.com/elo/calculator.html#rating1=

3450&name2=Carlsen%2C+Magnus.

[18] Hans J Berliner. Experiences in Evaluation with BKG - A Program that Plays Backgammon.
In IJCAI, volume 5, pages 428–433, 1977.

[19] Hans J Berliner. Backgammon computer program beats world champion. Artificial Intelligence,
14(2):205–220, 1980.

[20] Gerald Tesauro. TD-Gammon: A self-teaching backgammon program. In Applications of
Neural Networks, pages 267–285. Springer, 1995.

[21] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning internal represen-
tations by error propagation. Technical report, California Univ San Diego La Jolla Inst for
Cognitive Science, 1985.

[22] Richard S Sutton. Learning to predict by the methods of temporal differences. Machine
learning, 3(1):9–44, 1988.

[23] GNU Backgammon. http://www.gnubg.org/.

[24] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van
Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanc-
tot, et al. Mastering the game of Go with deep neural networks and tree search. Nature,
529(7587):484–489, 2016.

[25] Jay Burmeister. Computer Go. Technical Report CS-TR-339, Department of Computer Sci-
ence, The University of Queensland, 1995.

[26] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing systems, pages
1097–1105, 2012.

9

https://stockfishchess.org/
http://www.computerchess.org.uk/ccrl/4040/rating_list_all.html
http://www.computerchess.org.uk/ccrl/4040/rating_list_all.html
https://ratings.fide.com/card.phtml?event=1503014
https://ratings.fide.com/card.phtml?event=1503014
https://wismuth.com/elo/calculator.html#rating1=3450&name2=Carlsen%2C+Magnus
https://wismuth.com/elo/calculator.html#rating1=3450&name2=Carlsen%2C+Magnus
http://www.gnubg.org/


Cameron Allen Mastering Games with AI 23 March 2018

[27] Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M Lucas, Peter I Cowling,
Philipp Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samothrakis, and Simon Colton.
A survey of monte carlo tree search methods. IEEE Transactions on Computational Intelligence
and AI in games, 4(1):1–43, 2012.

[28] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur
Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game
of go without human knowledge. Nature, 550(7676):354, 2017.

[29] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot, L. Sifre,
D. Kumaran, T. Graepel, T. Lillicrap, K. Simonyan, and D. Hassabis. Mastering Chess and
Shogi by Self-Play with a General Reinforcement Learning Algorithm. ArXiv e-prints, Decem-
ber 2017.

[30] Oriol Vinyals, Timo Ewalds, Sergey Bartunov, Petko Georgiev, Alexander Sasha Vezhnevets,
Michelle Yeo, Alireza Makhzani, Heinrich Küttler, John Agapiou, Julian Schrittwieser, et al.
Starcraft ii: a new challenge for reinforcement learning. arXiv preprint arXiv:1708.04782, 2017.

10


