Characterizing the Action-Generalization Gap in Deep Q-Learning

Zhiyuan Zhou Cameron Allen
Department of Computer Science Department of Computer Science
Brown University Brown University
Providence, RI 02912 Providence, RI 02912

zhouzy@brown.edu csal@brown.edu
Kavosh Asadi George Konidaris
Amazon Web Services Department of Computer Science
Santa Clara, CA 95054 Brown University
kavasadi@amazon.com Providence, RI 02912

gdk@cs.brown.edu

Abstract

We study the action generalization ability of deep Q-learning in discrete action spaces. Generalization is crucial for effi-
cient reinforcement learning (RL) because it allows agents to use knowledge learned from past experiences on new tasks.
But while function approximation provides deep RL agents with a natural way to generalize over state inputs, the same
generalization mechanism does not apply to discrete action outputs. And yet, surprisingly, our experiments indicate that
Deep Q-Networks (DQN), which use exactly this type of function approximator, are still able to achieve modest action
generalization. Our main contribution is twofold: first, we propose a method of evaluating action generalization using
expert knowledge of action similarity, and empirically confirm that action generalization leads to faster learning; second,
we characterize the action-generalization gap (the difference in learning performance between DON and the expert) in
different domains. We find that DQN can indeed generalize over actions in several simple domains, but that its ability
to do so decreases as the action space grows larger.

Keywords: Action Generalization, Deep Reinforcement Learning, Action Ab-
straction, Deep Q Learning

Acknowledgements

This research was supported by a Brown University Undergraduate Teaching and Research Award, as well as by the
ONR under the PERISCOPE MURI Contract N00014-17-1-2699, and by the NSF under grant 1955361.

Introduction

In reinforcement learning, generalization (Ponsen et al., 2009) is crucial for achieving efficient learning and leads to better
performance over unseen data. Generalization allows agents to extrapolate from environment data they have observed
and to adapt to unseen situations. It is well known that deep learning supports generalization (Kawaguchi et al., 2017),
and deep reinforcement learning agents, which use deep learning to maximize reward, can therefore be expected to
generalize as well. However, this kind of generalization is assumed to come from parameter sharing in the function
approximator, and thus only provides a natural way of generalizing over inputs.

In discrete-action domains, deep reinforcement learning (DRL) agents typically only use states as inputs, because incor-
porating actions as inputs becomes computationally expensive as the size of the action space grows. Therefore, such
agents, typified by DON (Mnih et al., 2015), cannot rely on the same parameter sharing mechanism for generalizing over
actions. And yet, many of the domains on which DQN has been shown to perform well have action spaces where gen-
eralization is not only possible, but essential. In particular, many of the Atari 2600 games (Machado et al., 2018) include
multiple actions with identical effects or actions (e.g. RIGHTFIRE) that combine the effects of two or more other actions
(e.g. RIGHT and FIRE). DQN'’s ability to cope with such action spaces is therefore surprising, given that it is unclear
exactly how it is generalizing over these kinds of “similar” actions.

In this work, we seek to better understand DQN'’s (arguably counter-intuitive) ability to generalize over actions. We first
empirically confirm the widely-held belief that action generalization leads to faster learning. We introduce an oracle for
characterizing “perfect” action generalization with DQN using expert knowledge: when it is known which actions lead
to the same transition effects, all action values for that subset are updated in one Q-update. Our experiments indicate
that such generalization indeed improves learning speed. Next, we study action generalization in unmodified DQN by
measuring its learning performance against the oracle; the difference is what we term the action-generalization gap. We
experiment on classic Gym control environments (Brockman et al., 2016) and Atari 2600 games, and find that DQN’s
ability to generalize over actions depends on the size of the action space. In small action spaces, DON performs nearly as
well as the expert; however, when the action space gets large, DON performs poorly because of its inability to generalize.

Expert Action Generalization

One way of achieving action generalization is through action abstraction. In the context of reinforcement learning, ab-
straction is a method to map the representation of the original problem to a new, simpler representation where irrelevant
properties are filtered and only properties relevant to decision-making are kept (Abel, 2020; Ponsen et al., 2009). Action
abstraction, in particular, is the technique of grouping similar actions together into one abstract action, ignoring their
small differences that are not relevant to decision-making. It facilitates generalization by abstracting similar experiences,
and allowing information about one experience to apply to related (unseen) experiences.

We introduce an oracle for characterizing perfect action generalization that uses expert knowledge to abstract over actions
that are similar to each other. More precisely, in a Markov Decision Process with state space S, action space A, reward
function R, and discount factor v, the expert knowledge is a symmetric |A| x |A| similarity matrix K, where each index
K (i,) is a value between 0 and 1 indicating the similarity score of actions a; and a;. A score of 1 means two actions
are fully similar, and 0 means fully different. Given this expert knowledge, we can adjust the Q-update process during
Q-learning: for an experience tuple (s, a,r, s’), we update

Q(s,a) = Qs,a) + a K(a,a) * [(r + 7V(s) - Qs.8)] V€ A,

In words, during each update step, we not only update Q(s, a) from the experienced action a, but also Q(s, &), propor-
tionally to how similar @ and & are. So, a fully similar action & will get a full Q update, and a fully dissimilar action a
will not be updated at all, and those in between will be updated proportionally. This process allows generalization to a
despite only experiencing a in the environment.

This oracle provides a way of measuring the degree of action generalization through learning performance. To see
how much action generalization DQN can do, we can simply compare it with the oracle, which represents a best-case
performance ceiling for action generalization methods. Since it is hard to quantify action generalization directly, we
compare learning performance instead, using it as a proxy for generalization. We define this performance difference
between the oracle and a DRL agent to be the action-generalization gap. The rest of this paper aims to characterize the
action-generalization gap for DQN.

Action Space Augmentation for Evaluation

In order to evaluate action generalization, we need environments with action spaces where actions may be similar to
each other, so that it makes sense for actions to generalize. To that end, we propose to augment the action space of a base
environment to include additional similar actions. We propose three such “action augmentation” methods:

1. Duplicate actions (N x): augment the original action set NV — 1 times, so the new action space contains N copies of
every action in the original action space.

2. Semi-duplicate actions: augment the original action set with 4 sets of reduced-magnitude actions, |A| in each set
(where | 4] is the size of the original action space), for a total of 5 - |A| actions. Each set of these semi-duplicate
actions has similar transition effects to the original action set, differing only in the magnitude. The magnitude
similarity is controlled by a similarity score i € [0, 1], where i = 1 corresponds to the same-magnitude action
and h = 0 corresponds to a zero-magnitude action (No-op). For example, in the Pendulum environment, we can
apply a 0.8 torque to the left, or 0.5 torque to the right, etc.

3. Random actions: augment the original action set with 4 - |A| stochastic actions for a total of 5 - |A| actions. Each
stochastic action is a uniform random distribution over the actions in the original action space.

Here we are concerned with discrete action spaces, so we take discrete-action versions of CartPole, Pendulum, and
LunarLander as the base environments for our experiments, and apply the three action augmentation methods to expand
the action space.

Because the action-augmentations above are artificially created, we can supply the oracle with knowledge of which sim-
ilar actions should be abstracted together. For the “duplicate actions” augmentation, all duplicate copies of each actions
are fully similar (K(¢,j) = 1) to each other, and not to anything else. For the “semi-duplicate actions” augmentation,
K(i,j) = hif a; and a; are semi-duplicates of each other, else K (i,j) = 0. For the “random actions” augmentation, all
the random actions are fully similar to each other, and nothing else is similar. For all augmentations, K (i,i) = 1. The
oracle uses this information to guide its Q updates.

Evaluating Performance

We now experimentally characterize the action-generalization gap between DQN and the oracle. In addition to the
augmented action space, we provide the original action space as a baseline for comparison, which we call “baseline”.
For the “duplicate actions” augmentation in this section, we set N = 5. For the semi-duplicate augmentation, we use
similarity scores h € {0.2,0.5,0.8}.

In the “duplicate actions” environments, having duplicate actions slows down learning, with the exception of Pendulum,
where 5x duplicate actions performs about the same as the baseline (Figure 1). By contrast, the oracle is unaffected by
the larger action space and performs just as well as the baseline. This confirms the hypothesis that action generalization
does help speed up learning.

CartPole Pendulum LunarLander
200 A 200
TN e _ 4 o -u.\“
s 4 PN 200 .
1504 | 4 —400 - 01 5
° N |
© - 1
= 125 A y —600 A —200 i}
2 |
-4 |
@ 100 A |
3 —800 - -400 |l
u o (]
2 751} I
+1000 —6004 |
50 A ;
1200 - {
254 —800 A
0 1000020000 30000 40000 50000 0 5000 10000 15000 20000 0 100000 200000 300000
Training Steps Training Steps Training Steps
—— 1x (baseline) 5x e 5x (oracle)

Figure 1: Action-generalization gap for DQN with 5x duplicate actions on CartPole, Pendulum, and LunarLander

The experiment also provides evidence that DQN is doing some implicit action generalization. Notice the difference in
performance between the oracle and unmodified DON in Figure 1: DQN takes at most twice as long as the oracle to
learn with 5x duplicate actions. This is a bit surprising given that the oracle performs the same as the unaugmented
environment (baseline), whose action space is one-fifth as large. If DON isn’t doing any action generalization, then
learning time should scale linearly with the size of the action space. The fact that it scales sub-linearly suggests that DQN
is able to generalize over actions to some degree.

These 5x duplicate action results are somewhat surprising, because even though there are more actions to choose from,
the probability of choosing the optimal action under a uniform random policy remains the same. So why does the learn-
ing problem become harder? We hypothesize two potential explanations. First, it could be a result of the overestimation

Pendulum CartPole Pendulum LunarLander

—200

—400

~600 ~200

—800

Episode Reward
-
1)
53

—400 -

f —— 1x (baseline)

{ 5%, h=0.2

y < 5%, h=0.2 (oracle) 50
. -= 5% h=05 i

-12001 W/ —— 5%, h=0.5 (oracle) 257 °F

Episode Reward

1000
-12001 W/
Y —-- 5%, h=0.8 1400 —800 1

~1400 v 5x, h=0.8 (oracle) 0 10000 20000 30000 40000 50000 0 5000 10000 15000 20000 0 100000 200000 300000
Training Steps Training Steps Training Steps

—600 -

0 2500 5000 7500 10000 12500 15000 17500 20000
Training Steps. —— 1x (baseline) 5x - 5x (oracle)

Figure 2: (Left) Action-generalization gap for DON with 5x semi-duplicate actions, for similarity score & € {0.2,0.5,0.8},
on Pendulum. (Right) Action-generalization gap for DQN with 5x random actions on CartPole, Pendulum, and Lu-
narLander.

bias in Q-Learning (Thrun and Schwartz, 1993), which increases with the size of the action space. Second, it could be
that a larger action space means greater opportunity for noise in neural network parameters to produce noisy gradient
updates. We leave a full investigation of these hypotheses for future work.

For the semi-duplicate action augmentations, all the experiments take about twice as long to converge, even the ones
using an oracle (Figure 2, left). This indicates that semi-duplicate actions form a harder learning problem than exactly-
duplicated actions, as expected. But still, we can note here that there is basically no action-generalization gap. This is
more evidence to suggest that DQN is able to generalize over actions in small action spaces.

The “random actions” (Figure 2, right) results tell a more complicated story: when random actions are introduced,
the learning performance is worse than “baseline”, regardless of whether the oracle is used. This shows that having
random actions makes learning substantially harder, which is expected because this stochasticity is hard to account
for during learning. What’s surprising is that in Pendulum and LunarLander the action-generalization gap is actually
negative: the oracle performs worse than unmodified DQN. We suspect this may be due to an incorrect assumption:
the oracle treats all random actions as similar to each other. However, the random actions are not always similar; in
fact, they frequently select from original actions that have completely opposite effects. Performing Q-updates with the
assumption that all random actions are fully similar may at times lead the function approximator to incorrectly update
shared internal parameters governing the Q-values of the non-stochastic actions. If we instead assume the random actions
are fully dissimilar, we simply recover the baseline performance. So, in the case of random actions, “baseline” is a better
performance ceiling because none of its “abstract” actions contains actions with opposite effects. Using this ceiling, the
action-generalization gap is quite noticeable, indicating that DQN is not good at generalizing over stochastic actions.

Evaluation on Large Action Spaces

The experiments from the last section suggest that DQN has some robustness to action augmentation in domains with
small action spaces. Here we investigate whether that robustness extends to environments with larger action spaces, and
find that, for both Pendulum and Atari 2600 games, it does not.

For Pendulum, we again augment with duplicate actions, and increase IV to discover the point at which learning perfor-
mance starts to degrade (see Figure 3, left). When N = 5, we do not observe any action-generalization gap, but when
N € {15,50}, the gap becomes quite noticeable. Moreover, when N = 50, learning is not just slow, but converges to
worse final performance. This deterioration in DQN'’s performance is not due to the inherent hardness of the domain,
because the oracle continues to match the performance of learning on the unaugmented environment. This suggests that
the large action-generalization gap must come from DQN'’s inability to generalize over actions is large action spaces.

For Atari 2600, we chose six commonly-used games to evaluate the action-generalization gap: Beam Rider, Breakout,
Pong, Ms Pacman, Qbert, and Space Invaders. Our experiments use three types of action augmentation:

1. Full action set: There are 18 legal actions that are shared across all Atari games. However, since some of the
actions are not meaningful in certain games, the default action space of each game is usually pruned to only
leave the meaningful action space (which we refer to as the “baseline” actions). In the full action set setting, we
use all of the 18 legal actions in Atari games as the action space, which increases the size of the action space for
all the games we investigate.

2. Duplicate actions: augment the baseline actions with N — 1 sets of duplicate actions. Here we use N = 5.

3. Noop actions: augment the baseline actions with IV - | A| noop actions. Here we use N = 2.

Breakout Ms Pacman Space Invaders

100 1 2500

Pendulum

2000

1500 1

Episode Reward
@
3

=% | 10004 8

500

Episode Reward

204
—— 1x (baseline)
5%
5x (oracle)
= 15x
—-— 15x (oracle)
= 50x
50x (oracle)

107 2000

04
1000

Episode Reward

~104

0 2500 5000 7500 10000 12500 15000 17500 20000
Training Steps

—~204
0

00 0.2 04 06 08 1.0 00 02 04 06 08 10 00 02 04 06 08 10
Training Steps le7 Training Steps le7 Training Steps le7

—— Baseline (1x) Duplicate (5x) == Full action set ~ =-=- Noop (2x)

Figure 3: (Left) Action-generalization gap for DQN with 5x, 15x, and 50x duplicate actions on Pendulum. (Right) Action-
generalization gap for DQN on six Atari games.

In Atari games, we don’t have expert knowledge of which actions are similar, because such information is game-specific
and often highly state-dependent. Fortunately, we can still use the unmodified baseline action space as a performance
ceiling, similar to the oracle in the preceding experiments. Even though this is not a perfect oracle because Atari ac-
tions are context-dependent and can’t simply be treated as one abstract action group, we can still use this approach to
characterize the action-generalization gap.

Figure 3 (right) shows a large action-generalization gap for the duplicate and full action set augmentations, across the
majority of games. We hypothesize that this degradation occurs because 1) Atari games are more complicated domains
and 2) Atari games have a larger action space to begin with, both of which make it harder for DQN to generalize over
actions. Surprisingly, the noop augmentation only leads to an action-generalization gap on Ms Pacman. We suspect that
which specific actions lead to worse performance may be game-dependent, and that in the other games, noop actions
may more frequently be the optimal choice.

Conclusion

Overall, we have obtained preliminary evidence suggesting that DON has some ability to do action generalization in
small to medium action spaces, but for the most part that ability does not extend to large action spaces. However, given
enough time, DQN may still be able to recover the optimal policy in those large spaces. A direction for future work is
to pinpoint the exact reason for DON not being able to generalize over actions in large action spaces and to provide a
remedy that improves performance.

References

Abel, D. (2020). A theory of abstraction in reinforcement learning. PhD thesis, Brown University.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., and Zaremba, W. (2016). OpenAl Gym.
arXiv preprint arXiv:1606.01540.

Kawaguchi, K., Kaelbling, L. P, and Bengio, Y. (2017). Generalization in deep learning. arXiv preprint arXiv:1710.05468.

Machado, M. C., Bellemare, M. G, Talvitie, E., Veness, J., Hausknecht, M., and Bowling, M. (2018). Revisiting the arcade

learning environment: Evaluation protocols and open problems for general agents. Journal of Artificial Intelligence
Research, 61:523-562.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,]., Bellemare, M. G., Graves, A., Riedmiller, M., Fidjeland,
A. K., Ostrovski, G., et al. (2015). Human-level control through deep reinforcement learning. Nature, 518(7540):529—
533.

Ponsen, M., Taylor, M. E., and Tuyls, K. (2009). Abstraction and generalization in reinforcement learning: A summary
and framework. In AAMAS Workshop on Adaptive and Learning Agents, pages 1-32.

Thrun, S. and Schwartz, A. (1993). Issues in using function approximation for reinforcement learning. In Proceedings of
the 1993 Connectionist Models Summer School, volume 6.

