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Abstract

A classical approach to solving partially observable Markov decision processes
(POMDPs) [Putermanl 2014] is maintaining a belief state—a distribution over
hidden states updated iteratively using Bayesian inference. In fact, an optimal
policy for a POMDP can always be expressed in terms of the belief state [Russell
and Norvig, [2010]. However, explicitly computing exact posteriors is intractable
beyond small-scale problems, and requires knowledge of the hidden state space
and transition dynamics, which are usually unavailable to the agent. Recent work
has proposed model-free algorithms that help agents learn memory functions that
are useful for solving partially observable tasks [Allen et al., |2024| |Koepernik
et al.l [2025]], but these methods provide no way of interpreting what exactly is
being remembered. We hypothesize that these learned memory functions are
implementing approximate Bayesian inference. To investigate this, we study two
environments where ground-truth state information is available to the experimenter
but not to the agent. By probing the hidden states of the trained recurrent networks,
we find that in both environments we can reconstruct belief state distributions that
closely match the ground-truth.

1 Introduction

Our objective is to build agents that make rational decisions even when observations contain incom-
plete information about the environment. One strategy is for the agent to explicitly represent a belief
state—a distribution over the underlying (unobserved) state of the world. However, belief updates
require an accurate model of how the environment evolves and produces observations, both of which
depend on hidden state information that the agent cannot observe. Even if such a model were learned
or provided to the agent, the Bayesian inference required to update the agent’s beliefs after each new
observation quickly becomes intractable for all but the smallest-scale environments.

A more scalable alternative is to train an agents’ memory function—in practice a recurrent neural
network (RNN)—in a model-free way, either through end-to-end reward maximization [Bakker,
2001} |Hausknecht and Stonel 2015} N1 et al., 2022} |Lee et al., [2025]], or explicitly by introducing
an auxiliary loss that penalizes non-Markovian state representations [Allen et al.| [2024] [Koepernik
et al.,|2025]. These methods do not assume agents know the set of underlying environment states,
nor that they have an accurate environment model, which makes RNNs very effective for learning
useful memory functions, but they provide no way of interpreting what exactly is being remembered.

We investigate whether RNNs implicitly learn to represent belief states and perform approximate
Bayesian inference when trained via reinforcement learning (RL). We first train a recurrent policy
with RL to maximize cumulative reward, then inspect the internal representations of the RNN to see if
they contain sufficient information to reconstruct the belief state. We consider two partially observable
environments, and in both, we see evidence of belief state information in the RNN representations.
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2 Background

An (undiscounted) partially observable Markov decision process (POMDP) is a tuple
(87 A7 Q7 Ta (I)v Ra Ha p0)7

where S, A, and () are the state, action, and observation spaces, 7': S x A — AS is the transition
function, ®: S — A is the observation function, R: S x A — R is the reward function, H is the
maximum time horizon, and py € AS is the initial state distribution. In timestep ¢, the agent receives
an observation w; € 2 and chooses an action a; € A, aiming to maximize the expected cumulative

reward Zf: o R(s¢,a;). An important concept when thinking about POMDPs is the belief state.

The belief state b, is the probability distribution over underlying hidden state s;, conditional on
the trajectory ag.t—1 = (ag,...,a:—1) of taken actions and the trajectory wo.: = (wp,...,w:) of
received observations. An important property of the belief state is that an optimal policy can always
be expressed in terms of it [Russell and Norvigl [2010], in the sense that the best policy that conditions
on belief state b; is as good as the best policy that conditions on entire histories (ag.t—1,wo:t)-

Thus, an approach to solving POMDPs is to calculate a belief state, classically done through sequential
Bayesian updates:

by (slwoie 1, a0s) o Plwigr [ 8) D be(s' | woue, aou—1)T(s | 8, ),
s'eS

with bg(s) = Plsg = s | wp]. However, this approach has two crucial limitations: it requires
knowledge of the true underlying dynamics S, T, ®, which are usually unavailable to the agent, and
the Bayesian updates are computationally intractable beyond small scale problems. We are interested
in whether RNNs trained via reinforcement learning can overcome these challenges.

We hypothesize that the learned memory function of an RNN might implement approximate, model-
free Bayesian inference. We investigate this by empirically probing the memory—that is, the RNN
hidden state—of trained agents in two different environments. As the experimenters, we have access
to the underlying dynamics and can calculate a ground truth belief state by performing exact Bayesian
inference. We find that the ground truth belief state can be reliably predicted from the RNN hidden
states, indicating that the RNN indeed learns to approximately encode and maintain belief states.

3 Environments
We briefly explain the two environments used in our experiments: CompassWorld and Marquee.

CompassWorld This is a partially observable 6 x 6 gridworld. The agent’s (hidden) state consists
of its position pos € {1,...,6}? and orientation dir € {N, E, S, W}, and is initialized uniformly at
random. The agent’s observation specifies whether it faces one of the four walls, the goal, or empty
space: w; € {EMPTY, NORTHWALL, EASTWALL, SOUTHWALL, WESTWALL, GOAL}, where the
goal is placed deterministically near the center of the west wall, see Figure[I] (Left) for an illustration.
At each step, the agent selects an action a; € {MOVEFORWARD, TURNLEFT, TURNRIGHT}, where
MOVEFORWARD moves one cell ahead (clipped at walls), TURNLEFT rotates 90° counterclockwise,
and TURNRIGHT rotates 90° clockwise. The agent receives a reward of —1 per timestep until it
reaches the goal i.e. until w; = GOAL.

Marquee In this environment, a human and a robot jointly configure a row of light bulbs (like
pixels in a marquee sign) of some length L € N. The robot’s observation is the current light bulb
configuration w; € {0, 1}, while the (hidden) state s, = (w;, g) additionally contains the goal
configuration g € {0,1}~. The goal configuration is sampled uniformly at random, at the beginning
of the episode, from a fixed set of possible goal states G C {0, 1}, and does not change throughout.
The robots actions are PASS, which does nothing, and FLIP; for i € {1,..., L}, which toggles the
1’th light bulb. If the bulb configuration matches the goal g after the robot’s action, then the episode
ends, otherwise the robot receives a reward of —1 and the human, which can be thought of as part
of the environment, toggles a randomly chosen bulb that does not match the goal configuration (i.e.
“fixes” a random incorrect bulb). The robot’s task is to (1) learn the set of possible goal states G
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Figure 1: (Left) CompassWorld agent on position (2, 5) looking East. Goal is to reach (3, 1) looking
West. The agent’s current observation is EMPTY. (Right) Marquee domain. Top shows the current
state of the light bulb array, in which light bulbs 1, 3,4, and N are ON; bottom shows the hidden goal.

across episodes, and (2) infer the actual goal g € G from the human’s actions within an episodeﬂ In
our experiment, the marquee sign has L = 40 light bulbs and the goal set has |G| = 16 elements,
corresponding to the 16 strings obtained by repeating each 4-bit pattern 0000, 0001, ...,1111 ten
times, yielding 40-bit strings. See Figure[T] (Right) for an illustration.
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Figure 2: Comparison of ground truth belief distributions and MLP-predicted belief distributions.

4 Experiments

Setup We generate a dataset of rollouts for both CompassWorld and Marquee using recurrent
policies trained with Lambda Discrepancy [Allen et all, [2024]. Each trajectory is of the form

7 = (wy, ag, he, bt)lzg) _1, where h; € RHIPPENSIZE jg the RNN hidden state produced from inputs
(wiyat—1,hi—1), and by € A(S) is the analytically computed belief state produced from inputs
(wo:¢, ap.t—1) (the agent does not have access to this). This yields a dataset that aligns hidden states
with ground-truth beliefs. We then train an MLP fj to predict b; from h; using supervised learning
with the KL divergence loss L(6) = Dxp(fg(h¢) || br). We include the initial pairs (h_1,b_1) with
h_1 = 0 (initial memory state) and b_; = py (initial state distribution). Analogously, we also train a
linear probe gy to predict b, from h; as above.

Baselines To contextualize the performance of our probe, we compare it with two baselines: The
first, ‘Constant Belief” in Figures [3|and El, always predicts a constant state distribution b; = p defined

This environment, in which the robot infers a goal by observing human actions, is an example of an
assistance game [Hadfield-Menell et al.} 2016]. It is described here as POMDP, which is always possible for a

fixed human policy [Shah et al., [2020].




for all s € S as p(s) = mean, (b] (s) where b] (s) is the probability assigned to s by the analytical
belief distribution calculated from trajectory 7 at time step ¢, and the mean is taken over all sampled
trajectories 7 and timesteps ¢. In words, p is the mean of the analytical belief distributions obtained
from the sampled trajectories. Importantly, this distribution also minimizes KL loss with respect to
the analytical beliefs in the sense that it satisfies

1 T
p = argmin D ZDKL(bt l9),
T,t

where the sum ranges over all sampled trajectories and timesteps. Therefore, this baseline can also
be thought of as a linear probe trained to predict the belief state from a constant, zeroed-out input.
Distribution p for the CompassWorld environment is shown in Figure [2] (b).

The second baseline, ‘MLP (FF)’, is a feed-forward network trained to predict b; directly from the
instantaneous observation w;. Its architecture approximates the total depth of the RNN plus the
hidden state linear probe: same number and width of hidden layers as the RNN (two), and an output
layer of size |S|. This baseline measures the extent to which the belief state is recoverable from the
current observation alone, without any recurrence.

Metrics In all of the following, b, is the prediction of the probe, and b, is the ground truth. A
should-know timestep is one where the ground-truth belief b; is a point mass on the true state. These
are timesteps where the sequence of past observations uniquely determine the ground truth state. For
example, in CompassWorld, if the agent observes EASTWALL, turns left and observes NORTHWALL,
it must be in the top right corner, facing north.

1. KL Divergence: Dxi(b; || b)) = 3, be(s) log, Z:Eig , averaged across datapoints. The unit

of this metric is bits, and it takes values in [0, co|, where 0 is the best.

2. Total Variation (TV): The L' distance, ||b; — by|[.: = iy, |bs(s) — by(s)|, averaged
across datapoints. The metric takes values in [0, 1], where 0 is the best.

3. Should-know Accuracy: Fraction of should-know steps where the MLP predictor’s argmax
matches the true state. This metric does not make sense for the baseline as the uniform
distribution does not have a unique argmax. Takes values in [0, 1], where 1 is the best.

4. Should-know Mass: Probability assigned to the true state by the probe in should-know
steps, averaged across data points: b;(argmax b; ). Takes values in [0, 1], where 1 is the best.

5. Impossible Mass: Total predicted probability assigned to states with zero ground-truth
probability, averaged across datapoints: ) . S,bu(5)=0 b:(s). Takes values in [0, 1], where 0
is the best.

Results Figures[3]and f] show the performance of the probes and baselines in CompassWorld and
Marquee. Our goal is to test whether the agent’s learned memory function implements an approximate
belief-state update. To that end, we evaluate two probes on the RNN hidden state (a linear probe and
an MLP probe) and compare them to two baselines: a constant KL-optimal predictor (the empirical
mean belief) and a feed-forward network MLP (FF) trained to predict b; from the instantaneous
observation w; using an architecture matched in depth and width to the RNN + linear probe.

Across both environments, the probes on the hidden state achieve substantially lower TV and KL
than either baseline and perform far better on the proposed “should-know” metrics. The probes also
place far less probability mass on impossible states than the baselines. As a visualization, Figure 2]
compares the average analytical belief with the average MLP-predicted belief in CompassWorld.

These findings also clarify the role of memory. The MLP (FF) baseline, which observes only wy,
performs much worse across all metrics. This indicates that the recurrent hidden state contains
additional information, beyond just the most recent observation, which allows the RNN to better
estimate the belief state.

The distinction between the two probes sharpens this picture. The nonlinear MLP probe shows
that the hidden state contains enough information to reconstruct the full belief distribution—the
information is present in the representation. The linear probe shows that this information is not stored
in a highly entangled form: a single affine map from the hidden state to A(S) already recovers the
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Figure 3: Belief-state estimation performance of probes and baselines in CompassWorld. Arrows
indicate directionality of preference: 1 = higher is better, | = lower is better.
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Figure 4: Belief-state estimation performance of probes and baselines in Marquee. Arrows indicate
directionality of preference: 1 = higher is better, | = lower is better.

belief with high accuracy and substantially outperforms both baselines. Thus, not only does the RNN
appear to maintain a belief-like summary of past observations, but this summary is linearly decodable.

Taken together, the results are consistent with our hypothesis: the trained RNN has learned an internal
representation that functions like an approximate Bayesian belief state.

5 Future Work

We plan to extend the Marquee environment into a two dimensional grid where goals are sampled

from a large library of bitmap images. This setting introduces richer spatial structure—contiguity,
edges, and patterns—that should yield interesting belief state distributions. Preliminary results

suggest Lambda Discrepancy 2024] struggles due to the fact that long episodes entail

sparse rewards. However, the Generalized Value Discrepancy (GVD) introduced by
[2025] does not rely on reward signals and may succeed in such an environment. This makes the 2D

Marquee environment an interesting testbed to both evaluate GVD’s robustness and for extending

memory probe experiments to more challenging environments.

Furthermore, in environments processed through camera inputs—such as robotic manipulation—
experimenters know the hidden state (e.g., the true position of the agent or objects) but the agent only
observes pixels. In such environments, the agent may create an inner representation of a belief state
to manage observations that can be both partial (e.g. obscured objects) and redundant (the same state
might produce different observations, e.g., because of a camera angle). It would be interesting to
conduct similar experiments in these more realistic settings.
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