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Abstract

Skills are essential for unlocking higher levels of problem solving. One popular approach for discovering skills is to maximize
the mutual information between the agent’s choice of skill and the state of the environment, empowering the agent to control its
environment. However, these approaches fail to make use of the natural state variables that exist in many reinforcement learning
domains. We present a general method that allows these algorithms to discover focused skills, which we define as skills that control
specific state variables. Applied to Variational Intrinsic Control, our method improves state space coverage by a factor of three,
unlocks new learning capabilities and automatically avoids side effects on downstream tasks.
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1 Introduction

Skills are learned behaviours that allow an agent to decompose a challenging problem into a set of easier sub-problems. In reinforce-
ment learning (RL), a key challenge is skill discovery: finding a useful collection of skills, either from the agent’s experiences or
from an explicit task description. The main difficulty stems from needing to determine the best way to decompose a given problem
before the agent has been told which problem to solve.

Fortunately, many existing RL domains come with a problem decomposition built in, only in terms of states, rather than actions. State
information is commonly factored into a list of distinct state variables. For example, the state of a cart-pole balancing task might be
specified in terms of the positions of the cart and pole, along with their respective linear and angular velocities. The state of a board
game task might be specified as a list of locations and piece types. The underlying structure in such a domain presents an opportunity
for addressing the problem of skill discovery.

Useful skills empower the agent to control its environment. For this reason, it has become popular to discover skills that maximize the
mutual information between the agent’s choice of skill and the state of the environment. In other words, skills are thought to be useful
if they can reliably reach different states. However, while such approaches are effective at generating a diverse set of behaviours,
those behaviours tend not to provide the agent with much actual control over the individual state variables of its environment. The
problem is that these methods treat the agent’s state representation as a single monolithic entity. This leads to poor state coverage,
unwanted side effects, and reduced learning efficiency on downstream tasks.

This paper introduces a general method for making empowerment-based skill discovery algorithms better at learning useful skills.
Rather than treating the agent’s state as a unified whole, we leverage the factored state representation to learn skills focused on
changing just one state variable at a time. We apply our method to an existing skill discovery algorithm, Variational Intrinsic
Control [1], improving exploration efficiency by a factor of 3. In downstream tasks, we show that these skills can solve problems that
their un-focused counterparts struggle with and can automatically avoid side effects with no modification to the agent’s goal.

2 Background

We consider skill learning in a Controlled Markov Process (S, A, P), where S is the set of states, 4 is the set of actions, and
P : SxAxS — [0, 1] is the transition probability function. We assume states are factored into n different variables, s = (s!, ..., s"),
where each state variable s’ is in R%. A skill consists of a name—an element z of an index set Z—and an associated policy
7. (alf(h)) that specifies a particular decision rule for choosing actions based on some function f of the agent’s history h. This
function might count elapsed time steps, detect whether certain salient events have occurred, or simply return the current state. Each
skill has a special termination action that ends the skill at the current state. The index set Z can either be finite (e.g. the integers
1 through n) or continuous (e.g. R?). In downstream tasks (after skill learning), we augment the controlled Markov process with a
scalar reward function R : § x A — R to form a Markov decision process, and train a meta-policy to select from among the learned
skills.

Discovering Skills through Empowerment. One popular way to evaluate skills is through the lens of the agent’s empowerment,
defined as the maximum mutual information between skills and states. Intuitively, a useful set of skills ought to increase the agent’s
influence over its environment, so we can search for a set of skills that maximally increase the agent’s control. The most relevant
starting point for our use case is Variational Intrinsic Control [1], whose objective depends on the start state and only rewards skills
once they terminate. This incentivizes the net effect of skills to be different. The VIC algorithm maximizes the conditional mutual
information I(Z; St|sg), where sg is a starting state, Z is sampled from a distribution v over skills and St is sampled from the
distribution pyz(sg) induced by following skill Z from start state so until termination. Since this mutual information is difficult to
compute, VIC maximizes the lower bound developed by [2]:

1(Z; Sr|s0) = —H(Z|ST, s0) + H(Z|s0)
=Ezu(]s0),50~pz (s0) 108 D(Z|ST, 50)] = Ezr(.|s0) lOg V(Z]50)]
> EZNV(~|50),SN/>Z(30) [IOg d(Z|ST7 SO)] - EZNV(~|S()) [IOg V(Z‘SO)]~
Here H(-) and H(-|-) are the entropy and conditional entropy. The skill discriminator d(Z|St,so) is a learned estimate of
p(Z|ST, so), the posterior distribution over skills. The discriminator tries to predict which skill was chosen given the start state and
final state. This lower bound gets tighter as d approaches the posterior distribution over skills. Therefore, the goal of information-

driven skill discovery is to learn both the skill policies and a good skill discriminator. As shown in [1], the lower bound is reached
by training a set of skill policies to maximize the reward

rvic(z, sT, 80) = log(d(z|sT, s0)) — log v(z|so), (1)

while updating d to estimate the posterior distribution over skills.
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3 Related Work

Empowerment quantifies how much an agent can influence its environment. Its original definition measured the maximum control of
a fixed action sequence over the environment [3]. This definition was extended by Gregor et al. [1] to measure the maximum control
of skill sequences — which can select different actions based on the environment state — leading to the first skill discovery algorithm
based on empowerment: Variational Intrinsic Control. A stream of related work followed, including the “Diversity Is All You Need”
algorithm [4] and the Dynamics-Aware Discovery of Skills [5]. These methods do not take advantage of the factored nature of many
RL domains. Our key contribution is to show that this factorization can be used to learn significantly better skills.

When the agent’s behavior has unintended consequences, we often call these consequences side effects. Allen et al. [6] showed that
such side effects can degrade planning efficiency, and introduced a method to learn focused skills that tend to perform much better
than side-effecting ones. While Allen et al.’s approach is limited to deterministic planning problems, our method learns skills that
avoid side effects in stochastic reinforcement learning environments. Beyond learning and planning, there are also obvious safety
benefits to avoiding side effects and a number of algorithms mitigate these effects [7, 8, 9]. We use the Distance Impact Penalties [9]
approach to avoid side effects, which penalizes the differences between the agent’s start and end states. The focus of these algorithms
has traditionally been to minimize the side effects of a single policy using a specific utility function. Our goal is to automatically
discover a collection of skill policies, each with minimal side effects, and show how this can leads to gains in both safety and
problem-solving on downstream tasks.

4 Focused Skill Discovery

Focused skills ought to control specific state variables. Therefore, we

f . . . 8 Algorithm 1 Focused Variational Intrinsic Control
assign each focused skill a farget variable, the state variable it should

control. Our goal is to achieve per-variable empowerment, which we Assume i is the target factor

define as the maximum mutual information between a skill and the val- for episode = 1, M do o

ues of its target variable. Sample soifrom the initial state distribution p
o . . ' Sample skill z from v(+|so, ¢)

To maximize mutual information for each target variable, we learn a Follow policy 7 until termination state s

separate skill discriminator d;(z|s{), s.) for every target variable ¢. This Update the skill discriminator d; from (z, sk, s3)

discriminator observes the initial and final values of the state variable i, Calculate the reward r(z, sT, so) using Eq. (2)

and estimates the probability of only those skills that target variable <. Update 7, to maximize

Restricting the skill discriminator’s estimates in this way allows skills Reinforce option prior v(-|sg, i) based on r

with different target variables to be learned in parallel, since the skill end for

discriminator updates no longer depend on all skills. This parallelization
is not possible with previous information-driven approaches because a
single discriminator learns to predict all skills. To ensure that only the target variable is modified, skills are penalized if they terminate
in a state that differs from the start state on non-target variables. For a skill z which targets variable ¢, the focused VIC reward is

r(z,s7,50) = log(di(z | sfp, 5)) —log(v(2s0)) — s — solla,2, (@)

where ||-||x 2 is a weighted £ norm with weights A € R%> <= controlling the penalty strength. Using a weight matrix to control

the penalty strength is useful since each state variable may have a different range of values. In our experiments, we chose a single
hyperparemeter A > 0 and set \;; equal to A divided by the maximum ¢, norm between any two values on variable j. So, for a state
variable whose values range from 0 to k, the weight was A/k. This ensures that the strength of the side effect penalty for each variable
is between 0 and \.The values of A on the target variable are set to zero so that changes on the target variable are not penalized.

There are two key differences between focused VIC reward in Equation 2 and the VIC reward in Equation 1. First, the focused reward
restricts the skill discriminator estimates to a specific target variable. Second, the focused reward penalizes skills if they terminate
in a state that is different from the start state on non-target variables. These modifications encourage skills to change just one state
variable at a time. Algorithm 1 shows how to modify VIC with the focused VIC reward.

S Experiments

In this section we showcase the benefits of focused skills by applying our method to Variational Intrinsic Control and comparing the
focused skills with unfocused skills in two GridWorld environments. Our method produces skills that control individual state variables
and improve the state-space coverage of the learned skills. In downstream tasks, focused skills unlock new learning capabilities and
can minimize side effects without changing the agent’s goal.

Environments. We learn skills in the FourRooms and ForageWorld environments shown in Figure 1. These environments have four
“primitive” actions that move the agent in each of the cardinal directions. When an agent selects an action it moves in one of the
other three directions with probability 0.1. The FourRooms environment has the same map as Sutton et al. [10], with four added tools
that the agent can pick up (shown in pink). The ForageWorld environment contains resources (yellow), as well as green cells that
should be avoided. While tools are always picked up if the agent moves to a tool’s location, resources are stochastically generated.
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Figure 1: [Left, Middle] Visualization of Focused VIC (blue) and VIC (brown) skills in FourRooms and ForageWorld environments.
Skills start in the grey square and terminate at the circles. Focused skills that collect tools (pink) and resources (yellow) return to the
start state to avoid side effects. [Right] State coverage in the FourRooms environment. Focused VIC skills explore three times more
efficiently than VIC skills (AUC 1.85 vs. AUC 0.62).

The agent can try collecting a resource by attempting to move to a resource square. It obtains the resource with probability 0.7 and
stays in place otherwise. Green cells are destroyed if an agent moves to a position with a green cell. The states in the FourRooms
and ForageWorld are composed of five and six state variables, respectively: one variable for the agent’s position and one variable for
each tool, resource, or green cell.

Training Details. We trained all policies using tabular Q-learning with e-greedy exploration and a discount factor of 0.99. We trained
16 skills for both VIC and Focused VIC algorithms (|Z| = 16). Following the experiments of Gregor et al. [1], the skill distribution
v is uniform over all skills and held constant during training. The skill discriminators for both algorithms made predictions using
an exponentially weighted moving average of the previous samples. For all focused skills we used A = 5 as the penalty strength
hyperparameter. To select target variables for the focused skills, we assigned two skills for each tool or resource, and used the
remaining skills (8 in FourRooms, 12 in ForageWorld) to target the position variable. In the downstream tasks (Section 5.2), we
trained a meta-policy to select which skill to execute. Once selected, skills proceed until they terminate. The meta-policy had access
to either the focused VIC or VIC skills. We also considered meta-policies that could choose primitive actions in addition to skills.

5.1 Analysis of Learned Skills

Focused Effects. Sample trajectories from eight focused skills are shown in the left and middle plots of Figure 1. As expected, the
focused skills targeting tools in FourRooms learn to collect the tools and return to the start state, avoiding side effects on the position
state variable. The ForageWorld resource skills also return to the start state, and navigate around green cells. These behaviours are
very different from VIC skills, which often change a combination of the state variables.

State-space Coverage. To measure state-space coverage, we used the Area Under the Curve (AUC) of the State Coverage vs. Skill
Chain Length graph, shown in Figure 1. We define the state coverage fraction for a skill chain of length [ from start state sy as number
of unique final states that can be reached after executing all possible skill combinations of length [, divided by the total number of
states. We plotted the mean state coverage fraction over 10 random start states. The Focused VIC skills are three times more efficient
at exploration than the VIC skills (AUC 1.85 vs. AUC 0.62). After just 4 skill executions, the focused skills can cover 93.8% of the
state space, compared to 23.8% coverage with the normal VIC skills.

5.2 Performance on Downstream Tasks

Focused skills significantly improve performance on the two downstream tasks we considered. In the FourRooms environment, the
agent’s goal is to pick up all four tools and navigate to the bottom-right corner. In the ForageWorld environment, the agent must
collect both resources and navigate to the bottom right corner. There is no penalty for destroying the green cells. In both cases,
the agent starts in the top-left corner and receives a (sparse) reward of +1 for accomplishing the task. We conduct 200 independent
training runs for each of the five agents we consider, plotting the mean and 95% confidence intervals of our results in Figure 2.

Improved Problem Solving. Agents with focused skills find much better solutions to their problems. Without primitive actions,
the agent with VIC skills fails to accomplish its goal in FourRooms. In contrast, the agent with focused VIC skills takes fewer than
150 steps, which corresponds to fewer than six skill executions. Focused skills also more efficient in the ForageWorld task, taking
about 13 fewer steps than the baseline VIC skills (32.4 steps vs. 45.6 steps).
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Figure 2: [Left, middle] Learning performance in FourRooms and ForageWorld. Focused VIC skills lead to faster learning on both
tasks. The agent with VIC skills (and no primitive actions) fails to reach the goal in FourRooms. Agents with only primitive actions
don’t reach the goal in either domain. [Right] Side effects to green cells in ForageWorld are minimized with focused VIC skills.

Avoiding Side Effects. One of the best features of focused skills is that they naturally avoid side effects. As shown in the right of
Figure 2, the agent with focused skills almost never damages green cells while learning to solve the downstream task, despite the
agent never being rewarded for avoiding green cells. This is a stark improvement over both the un-focused skills and primitive agent,
which typically break between two and three green cells every episode.

6 Discussion & Conclusion

We presented focused skill discovery, a method that enables empowerment-based skills to control specific state variables. Applied
to Variational Intrinsic Control, we showed that our method triples exploration efficiency, unlocks new learning capabilities, and
naturally avoids side effects without changing the agent’s goal. In the future, we plan to apply this method to other skill discovery
algorithms and experiment with larger environments. While pre-defined state variables play a key role, we hope to extend this idea
to include other kinds of state abstractions.
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