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Backscatter X-ray Technology

» Backscatter X-ray
technology collects
data by reflecting an
X-ray beam from a
target to a detector
on the near side.
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intensity is RN &
dependent on:
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Density

Z® Backscatter

» Backscatter tends to Diteztas Subject
favor low-Z, high
density materials
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AS&E SmartCheck HT Personnel Screening System

» Uses X-ray backscatter
technology to detect
anomalies

» Displays images to
operator, with anomalies
marked for inspection

» Two-Sided System
Front Image

Back |mage SmartCheck HT System

Transmission Image
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Problem Description

» Anomaly Detection
Full-body scan is processed and displayed to operator
Anomalous regions are marked for further screening

» Edge Information is Critical
Metals are denser than organics
Organic anomalies add discontinuities to body surface

» Problem for Leg Images
Geometry of scanner produces lower
signal-to-noise ratio in leg region
Tibia edges cause high false-alarm rate
Higher density
Close to surface of leg
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Anomaly-Detection Algorithm

» Focus on front-side lower leg region

Well-defined set of issues making this a problem where we
could show progress over summer-length period

Methods adaptable to more challenging parts of the body
» Use training data to determine edge distribution

I. Segment leg region of images

2. De-noise leg images while preserving edges

3. Map leg images into common coordinate system

4. Detect anomalies using training image statistics
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Segmentation and Cropping

-

Figure 1. (Left) SmartCheckHT full-body X-ray backscatter image. (Censored for privacy.)
(Middle) Full-body image with segmentation mask and manual crop highlighted.
(Right) Leg image after background subtraction and manual crop.

» SmartCheckHT test images from American Science and Engineering
» Used AS&E segmentation masks for background subtraction

» Manually cropped leg-region for each leg
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De-noising Filter with Edge Preservation

» Images dominated by Poisson noise

Need to remove noise while preserving edges

» Non-local means filter

Estimates the value at pixel x by taking the average of all pixels whose
neighborhood “looks like” the neighborhood around x.

Makes use of repeated details in image

Removes noise while preserving edge structures (much less blurring
than, for example, Gaussian filtering)
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Alignment and Registration

» Transform leg images
into common coordinate
system for valid
statistical analysis
computation.

|. Affine Transformation

Minimizes differences in
position, scale, orientation,
and skew.

2. Non-Rigid Registration

Deals with differences in
subject posture (e.g. knee
angle, ankle shape).
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Affine Transformation

» Select m boundary reference X . T = X
points for each image. (x, y 1) (%05 1)
. . . X, ¥y, 1|, , y, 1
» Find spatial transformation T hot 0
from one set X of reference | hoty 0=
points to another set X. | , st
Minimize squared distance \Fn Y 1) X Y. 1)

between reference points.

» 6 degrees of freedom
Scale, X
Scale,Y

Translation, X
Translation,Y

Rotation
Skew
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Affine Alignment

. Pick arbitrary base image I,
2. Find transformations T, from I, to each image I,

3. Find the mean transformation:
TM = mean( {TJO <i< m)

4. Use T, to align I, to mean coordinate space

5. Use T;!T), to align I, to mean coordinate space
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Non-Rigid Registration

» Eliminate differences in subject posture in specific regions

» Non-rigid, B-Spline Grid, Image Registration
Draw a grid over the image.

Deform the grid nonlinearly, so as to minimize squared pixel
distance between the two images.

Use the deformed grid to move the original pixels into place.

No Alignment Affine Alignment Non-rigid Registration

r-y-y
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Computing Training Image Statistics

» Normalize intensities to range [0, ]

» Find gradient magnitude at each pixel

Simple first-order differences (vertical and horizontal)

» Compute mean and std. deviation across multiple images

(Left) Mean of gradient images.
(Right) Standard deviation of gradient images.

12 of 19



Creating a Set of Images for Testing

» Training data set
|4 left-leg images

No known anomalies

» Testing “live” data set
22 right- and left-leg images
Distinct from training set

4 known real anomalies

» Simulated anomalies

Crop real threats from full-body
images; insert onto live images.

Randomize position, scale, rotation

Blend edges of inserted threat
with surrounding leg area.
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Detecting Anomalies in the Test Images

» Threshold gradient
magnitudes at |3
standard deviations to
get seed points

Chosen based on ROC
curve
» Threshold at 7.5
standard deviations to
find anomalous regions
near the seed points

Chosen based on
aesthetics
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Time Breakdown of Algorithm (seconds)

O 1. Denoising

[ 2. Affine Alighment

B 3. Non-rigid Registration
® 4. Thresholding

B 5. Processing Anomalies
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Algorithm Performance

» Detection Rate: 97(x1)%

Def. — An anomaly was detected in an image that was known to
contain an anomaly (real or simulated).

Real: 4/4
Simulated: 91/94 (over multiple runs)

» False-Alarm Rate: ~0% (0/22)

Def. — An anomaly was detected in an image that was not
known to contain an anomaly.

Multiple test runs do not increase false-alarm rate precision.
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Algorithm Limitations

» Limitations
Number of images — more training data increases robustness
High variance at borders necessitates ignoring border regions
Leg region needs to be manually cropped for each leg

» Future Work
Automatically crop the region of interest

Extend algorithm to work with other parts of the body
(e.g. rear leg, upper leg)
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