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Abstract

A fundamental assumption of reinforcement learning in Markov decision processes
(MDPs) is that the relevant decision process is, in fact, Markov. However, when
MDPs have rich observations, agents typically learn by way of an abstract state
representation, and such representations are not guaranteed to preserve the Markov
property. We introduce a novel set of conditions and prove that they are sufficient
for learning a Markov abstract state representation. We then describe a practical
training procedure that combines inverse model estimation and temporal contrastive
learning to learn an abstraction that approximately satisfies these conditions. Our
novel training objective is compatible with both online and offline training: it does
not require a reward signal, but agents can capitalize on reward information when
available. We empirically evaluate our approach on a visual gridworld domain
and a set of continuous control benchmarks. Our approach learns representations
that capture the underlying structure of the domain and lead to improved sample
efficiency over state-of-the-art deep reinforcement learning with visual features—
often matching or exceeding the performance achieved with hand-designed compact
state information.

1 Introduction

Reinforcement learning (RL) in Markov decision processes with rich observations requires a suitable
state representation. Typically, such representations are learned implicitly as a byproduct of doing
deep RL. However, in domains where precise and succinct expert state information is available,
agents trained on such expert state features usually outperform agents trained on rich observations.
Much recent work (Shelhamer et al., 2016; Pathak et al., 2017; Ha & Schmidhuber, 2018; Gelada
et al., 2019; Yarats et al., 2019; Kaiser et al., 2020; Laskin et al., 2020a,b; Zhang et al., 2021) has
sought to close this representation gap by incorporating a wide range of representation-learning
objectives that help the agent learn abstract representations with various desirable properties.

Perhaps the most obvious property to incentivize in a state representation is the Markov property,
which holds if and only if the representation contains enough information to accurately characterize
the rewards and transition dynamics of the decision process. Markov decision processes (MDPs) have
this property by definition, and most reinforcement learning algorithms depend on having Markov
state representations. For instance, the ubiquitous objective of learning a stationary, state-dependent
optimal policy that specifies how the agent should behave is only appropriate for Markov states.

But learned abstract state representations are not necessarily Markov, even when built on top of
MDPs. This is due to the fact that abstraction necessarily throws away information. Discard too much
information, and the resulting representation cannot accurately characterize the environment. Discard
too little, and agents will fail to close the representation gap. Abstraction must balance between
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Figure 1: (Left) A 6×6 visual gridworld domain with hidden state s and unknown sensor σ, where an abstraction
function φ maps each high-dimensional observed state x to a lower-dimensional abstract state z (orange circle).
(Right) Our Markov abstraction training architecture. A shared encoder φ maps ground states x, x′ to abstract
states z, z′, which are inputs to an inverse dynamics model I and a contrastive model D that discriminates
between real and fake state transitions. The agent’s policy π depends only on the current abstract state.

ignoring irrelevant information and preserving what is important for decision making. If reward
feedback is available, an agent can use it to determine which state information is relevant to the task
at hand. Alternatively, if the agent can predict raw environment observations from learned abstract
states, then all available information is preserved (along with the Markov property). However, these
approaches are impractical when rewards are sparse or non-existent, or observations are sufficiently
complex.

We introduce a new approach to learning Markov state abstractions. We begin by defining a set of
theoretical conditions that are sufficient for an abstraction to retain the Markov property. We next
show that these conditions are approximately satisfied by simultaneously training an inverse model to
predict the action distribution that explains two consecutive states, and a discriminator to determine
whether two given states were in fact consecutive. Our combined training objective (architecture
shown in Fig. 1, right) supports learning Markov abstract representations without requiring reward
information or observation prediction.

Our method is effective for learning Markov state abstractions that are highly beneficial for decision
making. We perform evaluations in two settings with rich (visual) observations: a gridworld naviga-
tion task (Fig. 1, left) and a set of continuous control benchmarks. In the gridworld, we construct
an abstract representation offline—without access to reward feedback—that captures the underlying
structure of the domain and fully closes the representation gap between visual and expert features.
In the control benchmarks, we combine our training objective (online) with traditional RL, where it
leads to a significant performance improvement over state-of-the-art visual representation learning.

2 Background

A Markov decision process M consists of sets of states X and actions A, reward function R :
X × A × X → R, transition dynamics T : X × A → Pr(X), and discount factor γ. For our
theoretical results, we assume M is a Block MDP (Du et al., 2019) whose behavior is governed by a
much smaller (but unobserved) set of states S, and where X is a rich observation generated by a noisy
sensor function σ : S → Pr(X), as in Figure 1 (left). Block MDPs conveniently avoid potential
issues arising from partial observability by assuming that each observation uniquely identifies the
unobserved state that generated it. In other words, there exists a perfect “inverse sensor” function
σ−1(x) 7→ s, which means the observations are themselves Markov, as we define below. Note that S,
σ, and σ−1 are all unknown to the agent.

Definition 1 (Markov State Representation). A decision process M = (X,A,R, T, γ) and its
state representation X are Markov if and only if T (k)

(
xt+1|{at−i, xt−i}ki=0

)
= T (xt+1|at, xt) and

R(k)
(
xt+1, {at−i, xt−i}ki=0

)
= R(xt+1, at, xt), for all a ∈ A, x ∈ X , k ≥ 1.

The superscript (k) denotes that the function is being conditioned on k additional steps of history.

The Markov property means that each state X it is a sufficient statistic for predicting the next state
and expected reward, for any action the agent might select. Technically, each state must also be
sufficient for determining the set of actions available to the agent in that state, but here we assume, as
is common, that every action is available in every state.
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The behavior of an RL agent is typically determined by a (Markov) policy π : X → Pr(A), and
each policy induces value function V π : X → R, which is defined as the expected sum of future
discounted rewards starting from a given state and following the policy π thereafter. The agent’s
objective is to learn an optimal policy π∗ that maximizes value at every state. Note that the assumption
that the optimal policy is stationary and Markov—that it only depends on state—is appropriate only
if the decision process itself is Markov; almost all RL algorithms simply assume this to be true.

2.1 State Abstraction

To support decision making when X is too high-dimensional for tractable learning, we turn to state
abstraction. Our objective is to find an abstraction function φ : X → Z mapping each ground state2 x
to an abstract state z = φ(x), with the hope that learning is tractable using the abstract representation
Z (see Figure 1, left). Since our goal is to support effective abstract decision making, we are mainly
concerned with the policy class Πφ, the set of policies with the same behavior for all ground states
that share the same abstract state:

Πφ :=
{
π :
(
φ(x1) = φ(x2)

)
=⇒

(
π(a|x1) = π(a|x2)

)
, ∀ a ∈ A;x1, x2 ∈ X

}
. (1)

An abstraction φ : X → Z, when applied to an MDP M , induces a new abstract decision process
Mφ = (Z,A, Tπφ,t, R

π
φ,t, γ), whose dynamics may depend on the current timestep t or the agent’s

behavior policy π, and, crucially, which is not necessarily Markov. Consider the following example.

Figure 2: An MDP and a non-Markov abstraction.

The figure above depicts a four-state, two-action MDP, and an abstraction φ where φ(x1) = φ(x2) =
zB . It is common to view state abstraction as aggregating or partitioning ground states into abstract
states in this way (Li et al., 2006). Generally this involves choosing a fixed weighting scheme w(x) to
express how much each ground state x contributes to its abstract state z, where the weights sum to 1
for the set of x in each z. We can then define the abstract transition dynamics Tφ as a w-weighted sum
of the ground dynamics (and similarly for reward): Tφ(z′|a, z) =

∑
x′∈z′

∑
x∈z T (x′|a, x)w(x). A

natural choice for w(x) is to use the ground-state visitation frequencies. For example, if the agent
selects actions uniformly at random, this leads to w(x0) = w(x3) = 1 and w(x1) = w(x2) = 0.5.

In this formulation, the abstract decision process is assumed to be Markov by construction, and Tφ and
Rφ are assumed not to depend on the policy or timestep. But this is an oversimplification. The abstract
transition dynamics are not Markov; they change depending on how much history is conditioned on:
Tφ(zA|at = a0, zt = zB) = 0.5, whereas Pr(zA|at = a0, zt = zB , at−1 = a1, zt−1 = zA) = 1.
By contrast, the ground MDP’s dynamics are fully deterministic (and Markov). Clearly, if we define
the abstract MDP in this way, it may not match the behavior of the original MDP.3 Even worse, if the
agent’s policy changes—such as during learning—this discrepancy can cause RL algorithms with
bounded sample complexity in the ground MDP to make an arbitrarily large number of mistakes in
the abstract MDP (Abel et al., 2018).

For the abstract decision process to faithfully simulate the ground MDP’s dynamics, w(x) must
be allowed to vary such that it always reflects the correct ground-state frequencies. Unfortunately,
even in the simple example above, maintaining accurate weights for w(x) requires keeping track
of an unbounded amount of history: if an agent reaches abstract state zB and repeats action a1 an
arbitrarily large number of times (N ), then knowing precisely which ground state it will end up in (x1
or x2) requires remembering the abstract state it originally came from N + 1 steps prior. Successful
modeling of the transition dynamics for a subsequent action a0 hinges on exactly this distinction
between x1 and x2. The abstraction introduces partial observability, and to compensate, w(x) must
be replaced with a belief distribution over ground states, conditioned on the entire history; instead

2We refer to x ∈ X as ground states (and M as the ground MDP), to reflect that these quantities are
grounded, as opposed to abstract, i.e. they have a firm basis in the true environment.

3Abel et al. (2018) presented a three-state chain MDP where they made a similar observation.
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of an abstract MDP, we have an abstract POMDP (Bai et al., 2016). This is especially unsatisfying,
not just because learning is challenging in POMDPs (Zhang et al., 2012), but because formulating
the problem as a Block MDP was supposed to avoid precisely this type of partial observability: an
abstraction exists (namely φ = σ−1) that would result in a fully observable abstract MDP, if only the
agent knew what it was.

We show that it is possible to learn a state abstraction that both reflects the behavior of the underlying
ground MDP and preserves the Markov property in the abstract MDP, without ever estimating or
maintaining a belief distribution. Our theoretical result leverages inverse dynamics models and
contrastive learning to derive conditions under which a state abstraction is Markov. We then adapt
these conditions into a corresponding training objective for learning such an abstraction directly from
the agent’s experience in the ground MDP.

3 Related Work

3.1 Bisimulation

The idea of learning Markov state abstractions is related to the concept of bisimulation (Dean &
Givan, 1997), the strictest type of state aggregation discussed in Li et al. (2006), where ground states
are equivalent if they have exactly the same expected reward and transition dynamics. Preserving
the Markov property is a prerequisite for a bisimulation abstraction, since the abstraction must also
preserve the (Markov) ground-state transition dynamics. Bisimulation-based abstraction is appealing
because, by definition, it leads to high-fidelity representations. But bisimulation is also very restrictive,
because it requires φ to be Markov for any policy (rather than just those in Πφ).

Subsequent work on approximate MDP homomorphisms (Ravindran & Barto, 2004) and bisimulation
metrics (Ferns et al., 2004, 2011) relaxed these strict assumptions and allowed ground states to have
varying degrees of “bisimilarity.” Castro (2020) introduced a further relaxation, π-bisimulation,
which measures the behavioral similarity of states under a policy π. But whereas full bisimulation
can be too strong, since it constrains the representation based on policies the agent may never actually
select, π-bisimulation can be too weak, since if the policy deviates from π (e.g. during learning), the
metric must be updated, and the representation along with it. Our approach can be thought of as a
useful compromise between these two extremes.

While bisimulation-based approaches have historically been computationally expensive and difficult
to scale, recent work has started to change that (Castro, 2020; Lehnert & Littman, 2020; Van der Pol
et al., 2020; Biza et al., 2021). Two recent algorithms in particular, DeepMDP (Gelada et al., 2019)
and Deep Bisimulation for Control (DBC) (Zhang et al., 2021), learn approximate bisimulation
abstractions by training the abstraction end-to-end with an abstract transition model and reward
function. This is a rather straightforward way to learn Markov abstract state representations since it
effectively encodes Definition 1 as a loss function.

One drawback of bisimulation-based methods is that learning an accurate model can be challenging
and typically requires restrictive modeling assumptions, such as deterministic, linear, or Gaussian
transition dynamics. Bisimulation methods may also struggle if rewards are sparse or if the abstraction
must be learned without access to rewards. Jointly training an abstraction φ with only the transition
model T̂ (φ(x), a) ≈ φ(x′) can easily lead to a trivial abstraction like φ(x) 7→ 0 for all x, since φ
produces both the inputs and outputs for the model. Our approach to learning a Markov abstraction
avoids this type of representation collapse without learning a forward model, and is less restrictive
than bisimulation, since it is compatible with both reward-free and reward-informed settings.

3.2 Ground-State Prediction and Reconstruction

Ground-state (or pixel) prediction (Watter et al., 2015; Song et al., 2016; Kaiser et al., 2020) mitigates
representation collapse by forcing the abstract state to be sufficient not just for predicting future
abstract states, but also future ground states. Unfortunately, in stochastic domains, this comes with
the challenging task of density estimation over the ground state space, and as a result, performance is
about on-par with end-to-end deep RL (Van Hasselt et al., 2019). Moreover, both pixel prediction and
the related task of pixel reconstruction (Mattner et al., 2012; Finn et al., 2016; Higgins et al., 2017;
Corneil et al., 2018; Ha & Schmidhuber, 2018; Yarats et al., 2019; Hafner et al., 2020; Lee et al.,
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2020) are misaligned with the fundamental goal of state abstraction. These approaches train models
to perfectly reproduce the relevant ground state, ergo the abstract state must effectively throw away
no information. By contrast, the objective of state abstraction is to throw away as much information
as possible, while preserving only what is necessary for decision making. Provided the abstraction is
Markov and accurately simulates the ground MDP, we can safely discard the rest of the observation.

3.3 Inverse Dynamics Models

As an alternative to (or in addition to) learning a forward model, it is sometimes beneficial to learn
an inverse model. An inverse dynamics model I(a|x′, x) predicts the distribution over actions
that could have resulted in a transition between a given pair of states. Inverse models have been
used for improving generalization from simulation to real-world problems (Christiano et al., 2016),
enabling effective robot motion planning (Agrawal et al., 2016), defining intrinsic reward bonuses
for exploration (Pathak et al., 2017; Choi et al., 2019), and decoupling representation learning from
rewards (Zhang et al., 2018). But while inverse models often help with representation learning, we
show in Sec. 4.2 that they are insufficient for ensuring a Markov abstraction.

3.4 Contrastive Learning

Since the main barrier to effective next-state prediction is learning an accurate forward model, a
compelling alternative is contrastive learning (Gutmann & Hyvärinen, 2010), which sidesteps the
prediction problem and instead simply aims to decide whether a particular state, or sequence of
states, came from one distribution or another. Contrastive loss objectives typically aim to distinguish
either sequential states from non-sequential ones (Shelhamer et al., 2016; Anand et al., 2019; Stooke
et al., 2020), real states from predicted ones (Van den Oord et al., 2018), or determine whether two
augmented views came from the same or different observations (Laskin et al., 2020b). Contrastive
methods learn representations that in some cases lead to empirically substantial improvements in
learning performance, but none has explicitly addressed the question of whether the resulting state
abstractions actually preserve the Markov property. We are the first to show that without forward
model estimation, pixel prediction/reconstruction, or dependence on reward, the specific combination
of inverse model estimation and contrastive learning that we introduce in Section 4 is sufficient to
learn a Markov abstraction.

3.5 Kinematic Inseparability

One contrastive approach which turns out to be closely related to Markov abstraction is Misra et al.’s
(2020) HOMER algorithm, and the corresponding notion of kinematic inseparability (KI) abstractions.
Two states x′1 and x′2 are defined to be kinematically inseparable if Pr(x, a|x′1) = Pr(x, a|x′2) and
T (x′′|a, x′1) = T (x′′|a, x′2) (which the authors call “backwards” and “forwards” KI, respectively).
The idea behind KI abstractions is that unless two states can be distinguished from each other—by
either their backward or forward dynamics—they ought to be treated as the same abstract state.
The KI conditions are slightly stronger than the ones we describe in Section 4, although when we
convert our conditions into a training objective in Section 5, we additionally satisfy a novel form of
the KI conditions, which helps to prevent representation collapse. While our approach works for
both continuous and discrete state spaces, HOMER was only designed for discrete abstract states,
and requires specifying—in advance—an upper bound on the number of abstract states (which is
impossible for continuous state spaces), as well as learning a “policy cover” to reach each of those
abstract states (which remains impractical even under discretization).

(For a more detailed discussion about KI and Markov abstractions, see Appendix F.)

3.6 Other Approaches

The Markov property is just one of many potentially desirable properties that a representation might
have. Not all Markov representations are equally beneficial for learning; otherwise, simply training an
RL agent end-to-end on (frame-stacked) image inputs ought to be sufficient, and none of the methods
in this section would need to do representation learning at all.

Smoothness is another desirable property and its benefits in RL are well known (Pazis & Parr, 2013;
Pirotta et al., 2015; Asadi et al., 2018). Both DeepMDP (Gelada et al., 2019) and DBC (Zhang
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et al., 2021), which we compare against, utilize Lipschitz smoothness when learning abstract state
representations. We find in Section 7 that a simple smoothness objective helps our approach in a
similar way. A full investigation of other representation-learning properties (e.g. value preservation
(Abel et al., 2016), symbol construction (Konidaris et al., 2018), suitability for planning (Kurutach
et al., 2018), information compression (Abel et al., 2019)) is beyond the scope of this paper.

Since our approach does not require any reward information and is agnostic as to the underlying RL
algorithm, it would naturally complement exploration methods designed for sparse reward problems
(Pathak et al., 2017; Burda et al., 2018). Exploration helps to ensure that the experiences used to learn
the abstraction cover as much of the ground MDP’s state space as possible. In algorithms like HOMER
(above) and the more recent Proto-RL (Yarats et al., 2021), the exploration and representation learning
objectives are intertwined, whereas our approach is, in principle, compatible with any exploration
algorithm. Here we focus solely on the problem of learning Markov state abstractions and view
exploration as an exciting direction for future work.

4 Markov State Abstractions

Recall that for a state representation to be Markov (whether ground or abstract), it must be a sufficient
statistic for predicting the next state and expected reward, for any action the agent selects. The state
representation of the ground MDP is Markov by definition, but learned state abstractions typically
have no such guarantees. In this section, we introduce conditions that provide the missing guarantees.

Accurate abstract modeling the ground MDP requires replacing the fixed weighting scheme w(x) of
Section 2 with a belief distribution, denoted by Bφ(x|{· · · }), that measures the probability of each
ground state x, conditioned on the entire history of agent experiences. Our objective is to find an
abstraction φ such that any amount of history can be summarized with a single abstract state z.

When limited to the most recent abstract state z, Bφ may be policy-dependent and non-stationary:4

Bπφ,t(x|z) :=
1[φ(x) = z] Pπt (x)∑

x̃∈z P
π
t (x̃)

, Pπt (x) :=
∑
a∈A

∑
x̃∈X

T (x|a, x̃)πt−1(a|x̃)Pπt−1(x̃), (2)

for t ≥ 1, where 1[·] denotes the indicator function, π is the agent’s (possibly non-stationary)
behavior policy, and P0 is an arbitrary initial state distribution. Note that Pπt and Bπφ,t may still be
non-stationary even if π is stationary.5

We generalize to a k-step belief distribution (for k ≥ 1) by conditioning (2) on additional history:

B
π(k)
φ,t

(
xt|zt, {at−i, zt−i}ki=1

)
:=

1[φ(xt) = zt]
∑
xt−1∈X T (xt|at−1, xt−1)B

π(k−1)
φ,t

(
xt−1 | zt−1, {at−i, zt−i}ki=2

)
∑
x̃t∈zt

∑
x̃t−1∈zt−1

T (x̃t|at−1, x̃t−1)B
π(k−1)
φ,t

(
x̃t−1 | zt−1, {at−i, zt−i}ki=2

) , (3)

where Bπ(0)φ,t := Bπφ,t. Any abstraction induces a belief distribution, but the latter is only independent
of history for a Markov abstraction. We formalize this concept with the following definition.

Definition 2 (Markov State Abstraction). Given an MDP M = (X,A,R, T, γ), initial state dis-
tribution P0, and policy class ΠC , a state abstraction φ : X → Z is Markov if and only if for any
policy π ∈ ΠC , φ induces a belief distribution Bπφ such that for all x ∈ X , z ∈ Z, a ∈ A, and k ≥ 1:

B
π(k)
φ,t

(
x|zt, {at−i, zt−i}ki=1

)
= Bπφ,t (x|zt) .

In other words, Markov abstractions induce belief distributions that only depend on the most recent
abstract state. This property allows an agent to avoid belief distributions entirely, and base its
decisions solely on abstract states. Note that Definition 2 is stricter than Markov state representations

4This section closely follows Hutter (2016), except here we consider belief distributions over ground states,
rather than full histories. An advantage of Hutter’s work is that it also considers abstractions over histories,
though it only provides a rough sketch of how to learn such abstractions. Extending our learning objective to
support histories is a natural direction for future work.

5This can happen, for example, when the policy induces either a Markov chain that does not have a stationary
distribution, or one whose stationary distribution is different from P0.
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(Def. 1). An abstraction that collapses every ground state to a single abstract state still produces a
Markov state representation, but for non-trivial ground MDPs it also induces a history-dependent
belief distribution.

Given these definitions, we can define the abstract transitions and rewards for the policy class Πφ

(see Eqn. (1)) as follows:6

Tπφ,t(z
′|a, z) =

∑
x′∈z′

∑
x∈z

T (x′|a, x)Bπφ,t(x|z), (4)

Rπφ,t(z
′, a, z) =

∑
x′∈z′

∑
x∈z

R(x′, a, x)T (x′|a, x)

Tπφ,t(z
′|a, z)

Bπφ,t(x|z). (5)

Conditioning the belief distribution on additional history yields k-step versions compatible with
Definition 1. In the special case where Bφ(x|z) is stationary and policy-independent (and if rewards
are defined over state-action pairs), we recover the fixed weighting function w(x) of Li et al. (2006).

4.1 Sufficient Conditions for a Markov Abstraction

The strictly necessary conditions for ensuring an abstraction φ is Markov over its policy class Πφ

depend on T andR, which are typically unknown and hard to estimate due toX’s high-dimensionality.
However, we can still find sufficient conditions without explicitly knowing T and R. To do this,
we require that two quantities are equivalent in M and Mφ: the inverse dynamics model, and a
density ratio that we define below. The inverse dynamics model Iπt (a|x′, x) is defined in terms of
the transition function T (x′|a, x) and expected next-state dynamics Pπt (x′|x) via Bayes’ theorem:
Iπt (a|x′, x) := T (x′|a,x)πt(a|x)

Pπt (x′|x) , where Pπt (x′|x) =
∑
ã∈A T (x′|ã, x)πt(ã|x). The same is true of

their abstract counterparts, Iπφ,t(a|z′, z) and Pπφ,t(z
′|z).

Theorem 1. If φ : X → Z is a state abstraction of MDP M = (X,A,R, T, γ) such that for any
policy π in the policy class Πφ, the following conditions hold for every timestep t:

1. Inverse Model. The ground and abstract inverse models are equal: Iπφ,t(a|z′, z) =

Iπt (a|x′, x), for all a ∈ A; z, z′ ∈ Z; x, x′ ∈ X , such that φ(x) = z and φ(x′) = z′.

2. Density Ratio. The ground and abstract next-state density ratios are equal, when conditioned
on the same abstract state: Pπt (z′|z)

Pπt (z′) =
Pπt (x′|z)
Pπt (x′) , for all z, z′ ∈ Z; x′ ∈ X , such that

φ(x′) = z′, where Pπt (x′|z) =
∑
x̃∈X P

π
t (x′|x̃)Bπφ,t(x̃|z), and Pπt (z′) =

∑
x̃′∈z′ P

π
t (x̃′).

Then φ is a Markov state abstraction.

Corollary 1.1. If φ : X → Z is a Markov state abstraction of MDP M = (X,A,R, T, γ) over the
policy class Πφ, then the abstract decision process Mφ = (Z,A,Rπφ,t, T

π
φ,t, γ) is also Markov.

We defer all proofs to Appendix D.

Theorem 1 describes a pair of conditions under which φ is a Markov abstraction. Of course, the
conditions themselves do not constitute a training objective—we can only use them to confirm an
abstraction is Markov. In Section 5, we adapt these conditions into a practical representation learning
objective that is differentiable and suitable for learning φ using deep neural networks. First, we show
why the Inverse Model condition alone is insufficient.

4.2 An Inverse Model Counterexample

The example MDP in Figure 2 additionally demonstrates why the Inverse Model condition alone is
insufficient to produce a Markov abstraction. Observe that any valid transition between two ground
states uniquely identifies the selected action. The same is true for abstract states since the only way to
reach zB is via action a1, and the only way to leave is action a0. Therefore, the abstraction satisfies

6For the more general definitions that support arbitrary policies, see Appendix C.

7



the Inverse Model condition for any policy. However, as noted in Section 2.1, conditioning on
additional history changes the abstract transition probabilities, and thus the Inverse Model condition
is not sufficient for an abstraction to be Markov. In fact, we show in Appendix D.2 that, given the
Inverse Model condition, the Density Ratio condition is actually necessary for a Markov abstraction.

5 Training a Markov Abstraction

We now present a set of training objectives for approximately satisfying the conditions of Theorem 1.
Since the theorem applies for the policy class Πφ induced by the abstraction, we restrict the policy
by defining π as a mapping from Z → Pr(A), rather than from X → Pr(A). In cases where π is
defined implicitly via the value function, we ensure that the latter is defined over abstract states.

Inverse Models. To ensure the ground and abstract inverse models are equal, we consider a
batch of N experiences (xi, ai, x

′
i), encode ground states with φ, and jointly train a model

f(a|φ(x′i), φ(xi); θf ) to predict a distribution over actions, with ai as the label. This can be achieved
by minimizing a cross-entropy loss, for either discrete or continuous action spaces:

LInv := − 1

N

N∑
i=1

log f(a = ai|φ(x′i), φ(xi); θf ).

Note that because the policy class is restricted to Πφ, if the policy is stationary and deterministic,
then Iπφ,t(a|z′, z) = πφ(a|z) = π(a|x) = Iπt (a|x′, x) and the Inverse Model condition is satisfied
trivially. Thus we expect LInv to be most useful for representation learning when the policy has high
entropy or is changing rapidly, such as during early training.

Density Ratios. The second condition, namely that
Pπφ,t(z

′|z)
Pπφ,t(z

′) =
Pπt (x′|z)
Pπt (x′) , means we can distinguish

conditional samples from marginal samples equally well for abstract states or ground states. This
objective naturally lends itself to a type of contrastive loss. We generate a batch of N sequential state
pairs (xi, x

′
i) as samples of Pr(x′|x), and a batch of N non-sequential state pairs (xi, x̃

′
i) as samples

of Pr(x′), where the latter pairs can be obtained, for example, by shuffling the x′i states in the first
batch. We assign positive labels (yi = 1) to sequential pairs and negative labels to non-sequential pairs.
This setup, following the derivation of Tiao (2017), allows us to write density ratios in terms of class-
posterior probabilities: δ(x′) := Pr(x′|x)

Pr(x′) = p(y=1|x,x′)
1−p(y=1|x,x′) and δφ(z′) := Pr(z′|z)

Pr(z′) = q(y=1|z,z′)
1−q(y=1|z,z′) ,

where p and q are just names for specific probability distributions.7 We jointly train an abstraction φ
and a classifier g(y|φ(x′), φ(x); θg), minimizing the cross-entropy between predictions and labels yi:

LRatio := − 1

2N

2N∑
i=1

log g(y = yi|φ(x′i), φ(xi); θg).

In doing so, we ensure g approaches p and q simultaneously, which drives δφ(z′)→ δ(x′).

Note that this is stronger than the original condition, which only required the ratios to be equal
in expectation. This stronger objective, when combined with the inverse loss, actually encodes a
novel form of the kinematic inseparability conditions from Section 3.5, which further helps to avoid
representation collapse. (See Appendix F for more details.)

Smoothness. To improve robustness and encourage our method to learn smooth representations
like those discussed in Section 3.6, we optionally add an additional term to our loss function:

LSmooth := (ReLU(‖φ(x′)− φ(x)‖2 − d0))2.

This term penalizes consecutive abstract states for being more than some predefined distance d0 away
from each other. Appendix L describes an additional experiment and provides further justification for
why representation smoothness is an important consideration that complements the Markov property.

7For completeness, we reproduce the derivation in Appendix E.
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Markov Abstraction Objective. We generate a batch of experiences using a mixture of abstract
policies πi ∈ ΠC ⊆ Πφ (for example, with a uniform random policy), then train φ end-to-end while
minimizing a weighted combination of the inverse, ratio, and smoothness losses:

LMarkov := αLInv + βLRatio + ηLSmooth,

where α, β, and η are coefficients that compensate for the relative difficulty of minimizing each
individual objective for the domain in question.

The Markov objective avoids the problem of representation collapse without requiring reward
information or ground state prediction. A trivial abstraction like φ(x) 7→ 0 would not minimize
LMarkov , because it contains no useful information for predicting actions or distinguishing authentic
transitions from manufactured ones.

6 Offline Abstraction Learning for Visual Gridworlds

First, we evaluate our approach for learning an abstraction offline for a visual gridworld domain (Fig.
1, left). Each discrete (x, y) position in the 6×6 gridworld is mapped to a noisy image (see Appendix
G). We emphasize that the agent only sees these images; it does not have access to the ground-truth
(x, y) position. The agent gathers a batch of experiences in a version of the gridworld with no rewards
or terminal states, using a uniform random exploration policy over the four directional actions.

These experiences are then used offline to train an abstraction function φMarkov, by minimizing
LMarkov (with α = β = 1, η = 0). We visualize the learned 2-D abstract state space in Figure 3a
(top row) and compare against ablations that train with only LInv or LRatio, as well as against two
baselines that we train via pixel prediction and reconstruction, respectively (see Appendix I for more
visualizations). We observe that φMarkov and φInv cluster the noisy observations and recover the
6 × 6 grid structure, whereas the others do not generally have an obvious interpretation. We also
observed that φRatio and φAutoenc frequently failed to converge.

Next we froze these abstraction functions and used them to map images to abstract states while
training DQN (Mnih et al., 2015) on the resulting features. We measured the learning performance of
each pre-trained abstraction, as well as that of end-to-end DQN with no pretraining. We plot learning
curves in Figure 3b. For reference, we also include learning curves for a uniform random policy and
DQN trained on ground-truth (x, y) position with no abstraction.

Markov abstractions match the performance of ground-truth position, and beat every other learned
representation except φInv. Note that while φMarkov and φInv perform similarly in this domain,
there is no reason to expect LInv to work on its own for other domains, since it lacks the theoretical
motivation of our combined Markov loss. When the combined loss is minimized, the Markov
conditions are satisfied. But even if the inverse loss goes to zero on its own, the counterexample in
Section 4.2 demonstrates that this is insufficient to learn a Markov abstraction.

(a) (b)

Figure 3: (a) Visualization of learning progress at selected times (left to right) of a 2-D state abstraction for the
6× 6 visual gridworld domain: (top row) LMarkov; (middle row) LInv only; (bottom row) LRatio only. Color
denotes ground-truth (x, y) position, which is not shown to the agent. (b) Mean episode reward for the visual
gridworld navigation task. Markov abstractions significantly outperform end-to-end training with visual inputs,
and match the performance of the expert (x, y) position features. (300 seeds; 5-point moving average; shaded
regions denote 95% confidence intervals.)
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7 Online Abstraction Learning for Continuous Control

Next, we evaluate our approach in an online setting with a collection of image-based, continuous
control tasks from the DeepMind Control Suite (Tassa et al., 2020). Our training objective is agnostic
about the underlying RL algorithm, so we use as our baseline the state-of-the-art technique that
combines Soft Actor-Critic (SAC) (Haarnoja et al., 2018) with random data augmentation (RAD)
(Laskin et al., 2020a). We initialize a replay buffer with experiences from a uniform random policy,
as is typical, but before training with RL, we use those same experiences with reward information
removed to pretrain a Markov abstraction. We then continue training with the Markov objective
alongside traditional RL. (See Appendix H for implementation details).

In Figure 4, we compare against unmodified RAD, as well as contrastive methods CURL (Laskin
et al., 2020b) and CPC (Van den Oord et al., 2018), bisimulation methods DeepMDP (Gelada et al.,
2019) and DBC (Zhang et al., 2021), and pixel-reconstruction method SAC-AE (Yarats et al., 2019).
As a reference, we also include non-visual SAC with expert features. All methods use the same
number of environment steps (the experiences used for pretraining are not additional experiences).

Figure 4: Mean episode reward vs. environment steps for DeepMind Control. Adding our Markov objective leads
to improved learning performance. (10 seeds; 5-point moving average; shaded regions denote 90% confidence
intervals; learning curve data is available at the linked code repository.)

Relative to RAD, our method learns faster on four domains and slower on one, typically achieving
the same final performance (better in one, worse in one). It performs even more favorably relative
to the other baselines, of which CURL is most similar to our method, since it combines contrastive
learning with data augmentation similar to that of RAD.8 Our approach even represents a marginal
improvement over a hypothetical “best of” oracle that always chooses the best performing baseline.
These experiments show that even in an online setting, where the agent can leverage reward informa-
tion and a Markov ground state when building its abstract state representation, explicitly encouraging
Markov abstractions improves learning performance over state-of-the-art image-based RL.

8 Conclusion

We have developed a principled approach to learning abstract state representations that provably
results in Markov abstract states, and which does not require estimating transition dynamics nor
ground-state prediction. We defined what it means for a state abstraction to be Markov while
ensuring that the abstract MDP accurately reflects the dynamics of the ground MDP, and introduced
sufficient conditions for achieving such an abstraction. We adapted these conditions into a practical
training objective that combines inverse model estimation and temporal contrastive learning. Our
approach learns abstract state representations, with and without reward, that capture the structure of
the underlying domain and substantially improve learning performance over existing approaches.

8We ran another experiment with no data augmentation, using a different state-of-the-art continuous control
algorithm, RBF-DQN (Asadi et al., 2021), and found similar results there as well (see Appendix K for details).
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Errata

1. An earlier version of this paper contained a typo in the definition of Pπt (z′). The correct defini-
tion is Pπt (z′) =

∑
x̃′∈z′ P

π
t (x̃′), but originally it read Pπt (z′) =

∑
x̃′∈X P

π
t (x̃′)Bπφ,t(x̃

′|z′).
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A Broader Impact Statement

Our approach enables agents to automatically construct useful, Markov state representations for
reinforcement learning from rich observations. Since most reinforcement learning algorithms implic-
itly assume Markov abstract state representations, and since agents may struggle to learn when that
assumption is violated, this work has the potential to benefit a large number of algorithms.

Our training objective is designed for neural networks, which are not guaranteed to converge to a
global optimum when trained with stochastic gradient descent. Typically, such training objectives will
only approximately satisfy the theoretical conditions they encode. However, this is not a drawback of
our method—it applies to any representation learning technique that uses neural networks. Moreover,
as neural network optimization techniques improve, our method will converge to a Markov abstraction,
whereas other approaches may not. In the meantime, systems in safety-critical domains should ensure
that they can cope with non-Markov abstractions without undergoing catastrophic failures.

We have shown experimentally that our method is effective in a variety of domains; however,
other problem domains may require additional hyperparameter tuning, which can be expensive.
Nevertheless, one benefit of our method is that Markov abstractions can be learned offline, without
access to reward information. This means our algorithm could be used, in advance, to learn an
abstraction for some problem domain, and then subsequent tasks in that environment (perhaps with
different reward functions) could avoid the problem of perceptual abstraction as well as any associated
training costs.
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B Glossary of Symbols

Here we provide a glossary of the most commonly-used symbols appearing in the rest of the paper.

Symbol Description

M = (X,A,R, T, γ) Ground MDP
X Observed (ground) state space
A Action space
R(x′, a, x) Reward function
T (x′|a, x) Transition model
γ Discount factor
R(k)(x′, a, x, {· · · }ki=1) Reward function conditioned on k steps of additional history
T (k)(x′|a, x, {· · · }ki=1) Transition model conditioned on k steps of additional history

S Unobserved (latent) state space, assumed for Block MDPs
σ : S → Pr(X) Sensor function for producing observed states
σ−1 : X → S Hypothetical “inverse-sensor” function, assumed for Block MDPs

φ : X → Z Abstraction function
w(x) Fixed ground-state weighting function for constructing an abstract

MDP (Li et al., 2006)
Bπφ,t(x|zt) Belief distribution for assigning policy- and time-dependent

weights to ground states
B
π(k)
φ,t (x|zt, {at−i, zt−i}ki=1) Belief distribution conditioned on k steps of history

Mφ = (Z,A,Rπφ,t, T
π
φ,t, γ) Abstract decision process (possibly non-Markov)

Z Abstract state space
Rπφ,t(z

′, a, z) Abstract reward function
Tπφ,t(z

′|a, z) Abstract transition model
R
π(k)
φ,t (z′, a, z, {· · · }ki=1) Abstract reward function conditioned on k steps of additional history

T
π(k)
φ,t (z′|a, z, {· · · }ki=1) Abstract transition model conditioned on k steps of additional history

π(a|x) A policy
π∗ An optimal policy
ΠC An arbitrary policy class
Πφ The class of abstract policies induced by abstraction φ
V π : X → R The value function induced by π

Pπt (x) Ground-state visitation distribution
Pπt (x′|x) Expected next-state dynamics model
Iπt (a|x′, x) Inverse dynamics model
Pπφ,t(z) Abstract-state visitation distribution
Pπφ,t(z

′|z) Abstract expected next-state dynamics model
Iπφ,t(a|z′, z) Abstract inverse dynamics model

Pπt (x, a|x′) Backwards dynamics model, used for kinematic inseparability
Table 1: Glossary of symbols
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C General-Policy Definitions

C.1 General-Policy Definitions

The definitions of Tπφ,t and Rπφ,t in Section 4 only apply when the policy π is a member of Πφ. Here
we derive more general definitions that are valid for arbitrary policies, not just those in Πφ. For the
special case where π ∈ Πφ, these definitions are equivalent to equations (4) and (5).

Abstract transition probabilities.

Pr(z′|a, z)

=
∑
x′∈X

Pr(z′|x′, a, z) Pr(x′|a, z)

=
∑

x′∈X:φ(x′)=z′

Pr(x′|a, z)

=
∑

x′∈X:φ(x′)=z′

∑
x∈X

Pr(x′|a, x, z) Pr(x|a, z)

=
∑

x′∈X:φ(x′)=z′

∑
x∈X

Pr(x′|a, x, z) Pr(a|x, z) Pr(x|z)∑
x̃∈X Pr(a|x̃, z) Pr(x̃t|zt)

Tπφ,t(z
′|a, z) :=

∑
x′∈X:φ(x′)=z′

∑
x∈X:φ(x)=z

T (x′|a, x)
πt(a|x)Bπφ,t(x|z)∑
x̃∈X πt(a|x̃)Bπφ,t(x̃|z)

Abstract rewards.∑
r∈R

rPr(r|z′, a, z)

=
∑
x′∈X

∑
x∈X

∑
r∈R

rPr(r, x′, x|z′, a, z)

=
∑
x′∈X

∑
x∈X

∑
r∈R

rPr(r|x′, z′, a, x, z) Pr(x′, x|z′, a, z)

=
∑
x′∈X

∑
x∈X

R(x′, a, x)
Pr(z′|x′, a, x, z) Pr(x′, x|a, z)

Pr(z′|a, z)

=
∑

x′∈X:φ(x′)=z′

∑
x∈X

R(x′, a, x)
Pr(x′|a, x, z) Pr(x|a, z)

Pr(z′|a, z)

=
∑

x′∈X:φ(x′)=z′

∑
x∈X

R(x′, a, x)
Pr(x′|a, x)

Pr(z′|a, z)
Pr(a|x) Pr(x|z)∑
x̃∈X Pr(a|x̃) Pr(x̃|z)

Rπφ,t(z
′, a, z) :=

∑
x′∈X:φ(x′)=z′

∑
x∈X:φ(x)=z

R(x′, a, x)
T (x′|a, x)πt(a|x)Bπφ,t(x|z)

Tπφ,t(z
′|a, z)

∑
x̃∈X πt(a|x̃)Bπφ,t(x̃|z)
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D Proofs

Here we provide proofs of Theorem 1 and its corollary, which state that the Inverse Model and Density
Ratio conditions are sufficient for φ and Mφ to be Markov. Then, to complement the counterexample
from Section 4.2, we also present and prove a second theorem which states that, given the Inverse
Model condition, the Density Ratio condition is in fact necessary for a Markov abstraction.

D.1 Main Theorem

The proof of Theorem 1 makes use of two lemmas: Lemma D.1, that equal k-step and (k − 1)-step
belief distributions imply equal k-step and (k − 1)-step transition models and reward functions, and
Lemma D.2, that equal k-step and (k − 1)-step belief distributions imply equal (k + 1)-step and
k-step belief distributions. Since the lemmas apply for any arbitrary policy, we use the general-policy
definitions from Appendix C.

Lemma D.1. Given an MDP M , abstraction φ, policy π, initial state distribution P0, and any
k ≥ 1, if Bπ(k)φ,t (xt|zt, {at−i, zt−i}ki=1) = B

π(k−1)
φ,t (xt|zt, {at−i, zt−i}k−1i=1 ), then for all at ∈ A and

zt+1 ∈ Z:

T
π(k)
φ,t (zt+1|{at−i, zt−i}ki=0) = T

π(k−1)
φ,t (zt+1|{at−i, zt−i}k−1i=0 )

∩ R
π(k)
φ,t (zt+1, {at−i, zt−i}ki=0) = R

π(k−1)
φ,t (zt+1, {at−i, zt−i}k−1i=0 ).

In the proof below, we start with Bπ(k)φ,t = B
π(k−1)
φ,t , and repeatedly multiply or divide both sides by

the same quantity, or take the same summations of both sides, to obtain Tπ(k)φ,t = T
π(k−1)
φ,t , then apply

the same process again, making use of the fact that Tπ(k)φ,t = T
π(k−1)
φ,t , to obtain Rπ(k)φ,t = R

π(k−1)
φ,t .

Proof:

B
π(k)
φ,t

(
xt
∣∣zt, {at−i, zt−i}ki=1

)
= B

π(k−1)
φ,t

(
xt
∣∣zt, {at−i, zt−i}k−1i=1

)
.

Let at ∈ A be any action.

⇒ πt(at|xt)Bπ(k)φ,t

(
xt
∣∣zt, {at−i, zt−i}ki=1

)
= πt(at|xt)Bπ(k−1)φ,t

(
xt
∣∣zt, {at−i, zt−i}k−1i=1

)
⇒ πt(at|xt)Bπ(k)

φ,t (xt|zt,{at−i,zt−i}ki=1)∑
x̃t∈X

πt(at|x̃t)Bπ(k)
φ,t (x̃t|zt,{at−i,zt−i}ki=1)

=
πt(at|xt)Bπ(k−1)

φ,t (xt|zt,{at−i,zt−i}k−1
i=1 )∑

x̃t∈X
πt(at|x̃t)Bπ(k−1)

φ,t (x̃t|zt,{at−i,zt−i}k−1
i=1 )

.

(6)
Let

C
π(k)
φ,t :=

πt(at|xt)Bπ(k)
φ,t (xt|zt,{at−i,zt−i}ki=1)∑

x̃t∈X
πt(at|x̃t)Bπ(k)

φ,t (x̃t|zt,{at−i,zt−i}ki=1)
(7)

Combining (6) and (7), we obtain:

C
π(k)
φ,t = C

π(k−1)
φ,t (8)

⇒
∑
xt∈zt

∑
xt+1∈zt+1

T (xt+1 | at, xt)Cπ(k)φ,t =
∑
xt∈zt

∑
xt+1∈zt+1

T (xt+1 | at, xt)Cπ(k−1)φ,t

⇔ T
π(k)
φ,t

(
zt+1 | {at−i, zt−i}ki=0

)
= T

π(k−1)
φ,t

(
zt+1 | {at−i, zt−i}k−1i=0

)
. (9)

Additionally, we can combine (8) and (9) and apply the same approach for rewards:

C
π(k)
φ,t = C

π(k−1)
φ,t

⇒ C
π(k)
φ,t

T
π(k)
φ,t (zt+1|{at−i,zt−i}ki=0)

=
C
π(k−1)
φ,t

T
π(k−1)
φ,t (zt+1|{at−i,zt−i}k−1

i=0 )

⇒ T (xt+1|at,zt)Cπ(k)
φ,t

T
π(k)
φ,t (zt+1|{at−i,zt−i}ki=0)

=
T (xt+1|at,zt)Cπ(k−1)

φ,t

T
π(k−1)
φ,t (zt+1|{at−i,zt−i}k−1

i=0 )

⇒ R
π(k)
φ,t

(
zt+1, {at−i, zt−i}ki=0

)
= R

π(k−1)
φ,t

(
zt+1, {at−i, zt−i}k−1i=0

)
. (10)
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Lemma D.2. Given an MDP M , abstraction φ, policy π, and initial state distribution P0, if for all
t ≥ k, zt ∈ Z, and xt ∈ X such that φ(xt) = zt, it holds that Bπ(k)φ,t (xt|zt, {at−i, zt−i}ki=1) =

B
π(k−1)
φ,t (xt|zt, {at−i, zt−i}k−1i=1 ), then for all zt+1 ∈ Z, xt+1 ∈ X : φ(xt+1) = zt+1,

B
π(k+1)
φ,t

(
xt+1

∣∣zt+1, {at−i, zt−i}ki=0

)
= B

π(k)
φ,t

(
xt+1

∣∣zt+1, {at−i, zt−i}k−1i=0

)
.

To prove this lemma, we invoke Lemma D.1 to obtain Tπ(k)φ,t = T
π(k−1)
φ,t , and then follow the same

approach as before, performing operations to both sides until we achieve the desired result.

Proof:

Let Tπ(k)φ,t be defined via (4) and (3). Applying Lemma D.1 to the premise gives:

T
π(k)
φ,t (zt+1|{at−i, zt−i}ki=0) = T

π(k−1)
φ,t (zt+1|{at−i, zt−i}k−1i=0 ).

Returning to the premise, we have:

B
π(k)
φ,t

(
xt
∣∣zt, {at−i, zt−i}ki=1

)
= B

π(k−1)
φ,t

(
xt
∣∣zt, {at−i, zt−i}k−1i=1

)
⇒

B
π(k)
φ,t

(
xt
∣∣zt, {at−i, zt−i}ki=1

)
T
π(k)
φ,t

(
zt+1

∣∣{at−i, zt−i}ki=0

) =
B
π(k−1)
φ,t

(
xt
∣∣zt, {at−i, zt−i}k−1i=1

)
T
π(k−1)
φ,t

(
zt+1

∣∣{at−i, zt−i}k−1i=0

)
⇒

∑
xt∈X:
φ(xt)=zt

T (xt+1|at,xt)Bπ(k)
φ,t (xt|zt,{at−i,zt−i}ki=1)

T
π(k)
φ,t (zt+1|{at−i,zt−i}ki=0)

=
∑
xt∈X:
φ(xt)=zt

T (xt+1|at,xt)Bπ(k−1)
φ,t (xt|zt,{at−i,zt−i}k−1

i=1 )
T
π(k−1)
φ,t (zt+1|{at−i,zt−i}k−1

i=0 )

⇒ B
π(k+1)
φ,t

(
xt+1

∣∣zt+1, {at−i, zt−i}ki=0

)
= B

π(k)
φ,t

(
xt+1

∣∣zt+1, {at−i, zt−i}k−1i=0

)
.

We now summarize the proof of the main theorem. We begin by showing that the belief distributions
B
π(k)
φ,t and Bπ(k−1)φ,t must be equal for k = 1, and use Lemma D.1 to prove the base case of the

theorem. Then we use Lemma D.2 to prove that the theorem holds in general.

Proof of Theorem 1:

Base case. For each π ∈ Πφ, let Bπφ,t be defined via (2). Then, starting from the Density Ratio
condition, for any zt+1, zt ∈ Z, and xt+1 ∈ X such that φ(xt+1) = zt+1, and any action at−1 ∈ A:

Pπφ,t(zt|zt−1)

Pπφ,t(zt)
=

Pπt (xt|zt−1)

Pπt (xt)

⇒
Pπφ,t(zt|zt−1)

Pπφ,t(zt)
=

∑
xt−1∈X

Pπt (xt|xt−1)

Pπt (xt)
Bπφ,t(xt−1|zt−1)

⇒ Pπt (xt)

Pπφ,t(zt)
=

∑
xt−1∈X

Pπt (xt|xt−1)B
π
φ,t(xt−1|zt−1)

Pπφ,t(zt|zt−1)
· I

π
t (at−1|xt,xt−1)πφ,t(at−1|zt−1)
Iπφ,t(at−1|zt,zt−1)πt(at−1|xt−1)

⇒ 1[φ(xt) = zt] P
π
t (xt)∑

x̃t∈zt P
π
t (x̃t)

= 1[φ(xt) = zt]
∑

xt−1∈X

T (xt|at−1, xt−1)Bπφ,t(xt−1|zt−1)

Tπφ,t(zt|at−1, zt−1)

⇒ Bπφ,t(xt|zt) =
1[φ(xt) = zt]

∑
xt−1∈X Tφ(xt|at−1, xt−1)Bπφ,t(xt−1|zt−1)∑

x̃t∈zt
∑
x̃t−1∈zt−1

T (x̃t|at−1, x̃t−1)Bπφ,t(x̃t−1|zt−1)

⇒ B
π(0)
φ,t (xt|zt) = B

π(1)
φ,t (xt|zt, at−1, zt−1) (11)

Here (11) satisfies the conditions of Lemma D.1 (with k = 1), therefore, for all at ∈ A:

T
π(0)
φ,t (zt+1|at, zt) = T

π(1)
φ,t (zt+1|at, zt, at−1, zt−1)

and R
π(0)
φ,t (zt+1, at, zt) = R

π(1)
φ,t (zt+1, at, zt, at−1, zt−1)
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This proves the theorem for k = 1.

Induction on k. Note that (11) also allows us to apply Lemma D.2. Therefore, by induction on k:

B
π(k+1)
φ,t

(
xt+1

∣∣zt+1, {at−i, zt−i}ki=0

)
= Bπφ,t(xt+1|zt+1) ∀ k ≥ 1 (12)

When (12) holds, we informally say that the belief distribution is Markov.

Proof of Corollary 1.1: Follows directly from Definition 2 and Lemma D.1 via induction on k.

This first corollary says that a Markov abstraction implies a Markov abstract state representation.
The next one says that, if a belief distribution is non-Markov over some horizon n, it must also be
non-Markov when conditioning on a single additional timestep.

Corollary 1.2. If there exists some n ≥ 1 such that Bπ(n)φ,t 6= Bπφ,t, then Bπ(1)φ,t 6= Bπφ,t.

Proof: Suppose such an n exists, and assume for the sake of contradiction that Bπ(1)φ,t = Bπφ,t. Then

by Lemma D.2, Bπ(k)φ,t = Bπφ,t for all k ≥ 1. However this is impossible, since we know there exists

some n ≥ 1 such that Bπ(n)φ,t 6= Bπφ,t. Therefore Bπ(1)φ,t 6= Bπφ,t.

D.2 Inverse Model Implies Density Ratio

As discussed in Section 4.2, the Inverse Model condition is not sufficient to ensure a Markov
abstraction. In fact, what is missing is precisely the Density Ratio condition. Theorem 1 already states
that, given the Inverse Model condition, the Density Ratio condition is sufficient for an abstraction to
be Markov over its policy class; the following theorem states that it is also necessary.

Theorem 2. If φ : X → Z is a Markov abstraction of MDP M = (X,A,R, T, γ) for any policy in
the policy class Πφ, and the Inverse Model condition of Theorem 1 holds for every timestep t, then
the Density Ratio condition also holds for every timestep t.

Proof:

Since φ is a Markov abstraction, equation (12) holds for any k ≥ 1. Fixing k = 1, we obtain:

B
π(1)
φ,t (x′|z′, a, z) = B

π(0)
φ,t (x′|z′)

1[φ(x′) = z′]
∑
x̃∈X T (x′|a, x̃)Bπφ,t(x̃|z)∑

x̃′∈X:φ(x′)=z′
∑
x̃∈X:φ(x)=z T (x̃′|a, x̃)Bπφ,t(x̃|z)

=
1[φ(x′) = z′]Pπt (x′)∑
x̃′∈X:φ(x̃′)=z′ P

π
t (x̃′)∑

x̃∈X T (x′|a, x̃)Bπφ,t(x̃|z)
Tπφ,t(z

′|a, z)
=

Pπt (x′)

Pπφ,t(z
′)∑

x̃∈X T (x′|a, x̃)Bπφ,t(x̃|z)
Pπt (x′)

=
Tπφ,t(z

′|a, z)
Pπφ,t(z

′)∑
x̃∈X

Iπt (a|x′, x̃)Pπt (x′|x̃)Bπφ,t(x̃|z)
Pπt (x′)π(a|x̃)

=
Iπφ,t(a|z′, z)Pπφ,t(z′|z)

Pπφ,t(z
′)π(a|z)∑

x̃∈X I
π
t (a|x′, x̃)Pπt (x′|x̃)Bπφ,t(x̃|z)

Pπt (x′)
=
Iπφ,t(a|z′, z)Pπφ,t(z′|z)

Pπφ,t(z
′)

(13)

Here we apply the Inverse Model condition, namely that Iπt (a|x′, x) = Iπφ,t(a|z′, z) for all z, z′ ∈ Z;
x, x′ ∈ X , such that φ(x′) = z′ and φ(x) = z.∑

x̃∈X P
π
t (x′|x̃)Bπφ,t(x̃|z)
Pπt (x′)

=
Pπφ,t(z

′|z)
Pπφ,t(z

′)

Pπt (x′|z)
Pπt (x′)

=
Pπφ,t(z

′|z)
Pπφ,t(z

′)
(Density Ratio)
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It may appear that Theorems 1 and 2 together imply that the Inverse Model and Density Ratio
conditions are necessary and sufficient for an abstraction to be Markov over its policy class; however,
this is not quite true. Both conditions, taken together, are sufficient for an abstraction to be Markov,
and, given the Inverse Model condition, the Density Ratio condition is necessary. Examining
equation (13), we see that, had we instead assumed the Density Ratio condition for Theorem 2 (rather
than the Inverse Model condition), we would not recover Iπt (a|x′, x) = Iπφ,t(a|z′, z), but rather∑
x̃∈X I

π
t (a|x′, x̃)Bπφ,t(x̃|z) = Iπφ,t(a|z′, z). That is, the Inverse Model condition would only be

guaranteed to hold in expectation, but not for arbitrary x ∈ X .
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E Derivation of Density Ratio Objective

Our Density Ratio objective in Section 5 is based on the following derivation, adapted from Tiao
(2017).

Suppose we have a dataset consisting of samples Xc = {x′c
(i)}nci=1 drawn from conditional distri-

bution Pr(x′|x), and samples Xm = {x′m
(j)}nmj=1 drawn from marginal distribution Pr(x′). We

assign label y = 1 to samples from Xc and y = 0 to samples from Xm, and our goal is to predict
the label associated with each sample. To construct an estimator, we rename the two distributions
p(x′|y = 1) := Pr(x′|z) and p(x′|y = 0) := Pr(x′) and rewrite the density ratio δ(x′) := Pr(x′|x)

Pr(x′)

as follows:

δ(x′) = p(x′|y=1)
p(x′|y=0) = p(y=1|x′)p(x′)

p(y=1)
p(y=0)

p(y=0|x′)p(x′) = nm
(nm+nc)

(nm+nc)
nc

p(y=1|x′)
p(y=0|x′) = nm

nc

p(y=1|x′)
1−p(y=1|x′) .

(14)

When nc = nm = N , which is the case for our implementation, the leading fraction can be ignored.
To estimate δ(x′), we can simply train a classifier g(x′, x; θg) to approximate p(y = 1|x′) and then
substitute g for p(y = 1|x′) in (14).

However, we need not estimate δ(x′) to satisfy the Density Ratio condition; we need only ensure
δφ(z′) = EBφ [δ(x′)]. We therefore repeat the derivation for abstract states and obtain δφ(z′) :=
Pr(z′|z)
Pr(z′) = nm

nc

q(y=1|z′)
1−q(y=1|z′) , where q is our renamed distribution, and modify our classifier g to accept

abstract states instead of ground states. The labels are the same regardless of whether we use ground
or abstract state pairs, so training will cause g to approach p and q simultaneously, thus driving
δφ(z′)→ δ(x′) and satisfying the Density Ratio condition.
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F Markov State Abstractions and Kinematic Inseparability

As discussed in Section 3, the notion of kinematic inseparability (Misra et al., 2020) is closely related
to Markov abstraction. Recall that two states x′1 and x′2 are defined to be kinematically inseparable if
Pr(x, a|x′1) = Pr(x, a|x′2) and T (x′′|a, x′1) = T (x′′|a, x′2) (which the authors call “backwards” and
“forwards” KI, respectively). Misra et al. (2020) define kinematic inseparability abstractions over the
set of all possible “roll-in” distributions u(x, a) supported on X ×A, and technically, the backwards
KI probabilities Pr(x, a|x′) depend on u. However, to support choosing a policy class, we can just as
easily define u in terms of a policy: u(x, a) := π(a|x)Pπt (x). This formulation leads to:

Pπt (x, a|x′) :=
T (x′|a, x)π(a|x)Pπt (x)∑

x̃∈X,ã∈A T (x′|ã, x̃)π(ã|x̃)Pπt (x̃)
.

Definition 3. An abstraction φ : X → Z is a kinematic inseparability abstraction of MDP M =
(X,A,R, T, γ) over policy class ΠC , if for all policies π ∈ ΠC , and all a ∈ A;x, x′1, x

′
2, x
′′ ∈ X

such that φ(x′1) = φ(x′2); Pπt (x, a|x′1) = Pπt (x, a|x′2) and T (x′′|a, x′1) = T (x′′|a, x′2).

Similarly, we can define forward—or backward—KI abstractions where only T (x′′|a, x′1) =
T (x′′|a, x′2)—or respectively, Pπt (x, a|x′1) = Pπt (x, a|x′2)—is guaranteed to hold. A KI abstraction
is one that is both forward KI and backward KI.

The KI conditions are slightly stronger conditions than those of Theorem 1, as the following example
demonstrates.

F.1 Example MDP

The figure below modifies the transition dynamics of the MDP in Section 2, such that the action a1
has the same effect everywhere: to transition to either central state, x1 or x2, with equal probability.

Figure 5: An MDP and a Markov abstraction that is not a KI abstraction.

By the same reasoning as in Section 4.2, the Inverse Model condition holds here, but now, due to the
shared transition dynamics of action a1, the Density Ratio condition holds as well, for any policy in
Πφ. We can apply Theorem 1 to see that the abstraction is Markov, or we can simply observe that
conditioning the belief distribution Bπφ,t(x|zB) on additional history has no effect, since any possible
trajectory ending in zB leads to the same 50–50 distribution over ground states x1 and x2. Either
way, φ is Markov by Definition 2.

This abstraction also happens to satisfy the backwards KI condition, since Pπt (x, a|x′1) = Pπt (x, a|x′2)
for any (x, a) pair and any policy. However, clearly T (x′|a0, x1) 6= T (x′|a0, x2), and therefore the
forwards KI condition does not hold and this is not a KI abstraction.

This example shows that the Markov conditions essentially take the stance that because π is restricted
to the policy class Πφ, knowing the difference between x1 and x2 doesn’t help, because π must have
the same behavior for both ground states. By contrast, the KI conditions take the stance that because
x1 and x2 have different dynamics, the agent may wish to change its behavior based on which state it
sees, so it ought to choose an abstraction that does not limit decision making in that respect.

F.2 “Strongly Markov” Implies KI

In Section 5, we mentioned that the Density Ratio training objective was stronger than necessary
to ensure the corresponding condition of Theorem 1. Instead of encoding the condition Pr(x′|z)

Pr(x′) =
Pr(z′|z)
Pr(z′) , we discussed how the contrastive training procedure actually encodes the stronger condition
Pr(x′|x)
Pr(x′) = Pr(z′|z)

Pr(z′) that holds for each ground state x individually, rather than just in expectation.
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Let us call the latter condition the Strong Density Ratio condition, and call its combination with the
Inverse Model condition the Strong Markov conditions.

Clearly the Strong Markov conditions imply the original Markov conditions, and, as the following
theorem shows, they also imply the KI conditions.

Theorem 3. If φ : X → Z is an abstraction of MDP M = (X,A,R, T, γ) such that for any policy
π in the policy class Πφ, both the Inverse Model condition of Theorem 1 and the Strong Density

Ratio condition—i.e. Pπt (x′|x)
Pπt (x′) =

Pπφ,t(z
′|z)

Pπφ,t(z
′) , for all z, z′ ∈ Z; x, x′ ∈ X such that φ(x) = z and

φ(x′) = z′—hold for every timestep t, then φ is a kinematic inseparability abstraction .

Proof:

Starting from the Inverse Model condition, we have Iπt (a|x′, x) = Iπφ,t(a|z′, z) for all z, z′ ∈ Z;
x, x′ ∈ X such that φ(x) = z and φ(x′) = z′. Independently varying either x′ ∈ φ−1(z′) or
x ∈ φ−1(z), we obtain the following:

[Vary x′]→ Iπt (a|x′1, x) = Iπt (a|x′2, x) (15)

[Vary x]→ Iπt (a|x′, x1) = Iπt (a|x′, x2) (16)

Similarly, if we start from the Strong Density Ratio condition, we obtain:

[Vary x′]→ Pπt (x′1|x)

Pπt (x′1)
=
Pπt (x′2|x)

Pπt (x′2)
(17)

[Vary x]→ Pπt (x′|x1)

Pπt (x′)
=
Pπt (x′|x2)

Pπt (x′)
(18)

If we apply Bayes’ theorem to (17), we can cancel terms in the result, and also in (18), to obtain:

Pπt (x|x′1) = Pπt (x|x′2) (19)

and Pπt (x′|x1) = Pπt (x′|x2). (20)

Combining (15) with (19), we obtain the backwards KI condition:

Iπt (a|x′1, x)Pπt (x|x′1) = Iπt (a|x′2, x)Pπt (x|x′2)

Pπt (x, a|x′1) = Pπt (x, a|x′2) (Backwards KI)

Similarly, we can combine (16) with (20) to obtain the forwards KI condition:

Iπt (a|x′, x1)Pπt (x′|x1) = Iπt (a|x′, x2)Pπt (x′|x2)

T (x′|a, x1)π(a|x1) = T (x′|a, x2)π(a|x2)

T (x′|a, x1) = T (x′|a, x2) (Forwards KI)

Thus, we see that the training objectives in Section 5 encourage learning a kinematic inseparability
abstraction in addition to a Markov abstraction. This helps avoid representation collapse by ensuring
that we do not group together any states for which a meaningful kinematic distinction can be made.
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G Implementation Details for Visual Gridworld

The visual gridworld is a 6× 6 grid with four discrete actions: up, down, left, and right. Observed
states are generated by converting the agent’s (x, y) position to a one-hot image representation (see
Figure 1, left). The image displays each position in the 6× 6 grid as a 3px-by-3px patch, inside of
which we light up one pixel (in the center) and then smooth it using a truncated Gaussian kernel.
This results in an 18× 18 image (where 3px-by-3px grid cells are equidistant), to which we then add
per-pixel noise from another truncated Gaussian. During pretraining, there are no rewards or terminal
states. During training, for each random seed, a single state is designated to be the goal state, and the
agent receives −1 reward per timestep until it reaches the goal state, at which point a new episode
begins, with the agent in a random non-goal location.

G.1 Computing Resources

To build the figures in the paper, we pretrained 5 different abstractions, and trained 7 different agents,
each with 300 seeds. Each 3000-step pretraining run takes about 1 minute, and each training run takes
about 30 seconds, on a 2016 MacBook Pro 2GHz i5 with no GPU, for a total of about 42 compute
hours. We ran these jobs on a computing cluster with comparable processors or better.

G.2 Network Architectures

FeatureNet(
(phi): Encoder(
(0): Reshape(-1, 252)
(1): Linear(in_features=252, out_features=32, bias=True)
(2): Tanh()
(3): Linear(in_features=32, out_features=2, bias=True)
(4): Tanh()

)
(inv_model): InverseNet(
(0): Linear(in_features=4, out_features=32, bias=True)
(1): Tanh()
(2): Linear(in_features=32, out_features=4, bias=True)

)
(contr_model): ContrastiveNet(
(0): Linear(in_features=4, out_features=32, bias=True)
(1): Tanh()
(2): Linear(in_features=32, out_features=1, bias=True)
(3): Sigmoid()

)
)
QNet(
(0): Linear(in_features=2, out_features=32, bias=True)
(1): ReLU()
(2): Linear(in_features=32, out_features=4, bias=True)

)
AutoEncoder / PixelPredictor(
(phi): Encoder(
(0): Reshape(-1, 252)
(1): Linear(in_features=252, out_features=32, bias=True)
(2): Tanh()
(3): Linear(in_features=32, out_features=2, bias=True)
(4): Tanh()

)
(phi_inverse): Decoder(
(0): Linear(in_features=2, out_features=32, bias=True)
(1): Tanh()
(2): Linear(in_features=32, out_features=252, bias=True)
(3): Tanh()
(4): Reshape(-1, 21, 12)

)
MSELoss()

)
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G.3 Hyperparameters

We tuned the DQN hyperparameters until it learned effectively with expert features (i.e. ground-truth
(x, y) position), then we left the DQN hyperparameters fixed while tuning pretraining hyperparameters.
For pretraining, we considered 3000 and 30,000 gradient updates (see Appendix J), and batch sizes
within {512, 1024, 2048}. We found that the higher batch size was helpful for stabilizing the offline
representations. We also did some informal experiments with latent dimensionality above 2, such as
3 or 10, which produced similar results: representations were still Markov, but harder to interpret.
We use 2 dimensions in the paper for ease of visualization. We did not tune the loss coefficients, but
we include ablations where either α or β is set to zero.

Hyperparameter Value

Number of seeds 300
Optimizer Adam
Learning rate 0.003
Batch size 2048
Gradient updates 3000
Latent dimensions 2
Number of conditional samples, nc 1
Number of marginal samples, nm 1
Loss coefficients
LInverse (α) 1.0
LContrastive (β) 1.0
LSmoothness (η) 0.0
Table 2: Pretraining hyperparameters

Hyperparameter Value

Number of seeds 300
Number of episodes 100
Maximum steps per episode 1000
Optimizer Adam
Learning rate 0.003
Batch size 16
Discount factor, γ 0.9
Starting exploration probability, ε0 1.0
Final exploration probability, ε 0.05
Epsilon decay period 2500
Replay buffer size 10000
Initialization steps 500
Target network copy period 50

Table 3: DQN hyperparameters
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H Implementation Details for DeepMind Control

We use the same RAD network architecture and code implementation as Laskin et al. (2020a), which
we customized to add our Markov objective. We note that there was a discrepancy between the batch
size in their code implementation (128) and what was reported in the original paper (512); we chose
the former for our experiments.

The SAC (expert) results used the code implementation from Yarats & Kostrikov (2020).

The DBC, DeepMDP, CPC, and SAC-AE results are from Zhang et al. (2021), except for Ball_in_Cup,
which they did not include in their experimental evaluation. We ran their DBC code independently
(with the same settings they used) to produce our Ball_in_Cup results.

H.1 Computing Resources

To build the graph in Section 7, we trained 4 agents on 6 domains, with 10 seeds each. Each training
run (to 500,000 steps) takes between 24 and 36 hours (depending on the action repeat for that domain),
on a machine with two Intel Xeon Gold 5122 vCPUs and shared access to one Nvidia 1080Ti GPU,
for a total of approximately 7200 compute hours. We ran these jobs on a computing cluster with
comparable hardware or better.

H.2 Markov Network Architecture

MarkovHead(
InverseModel(
(body): Sequential(
(0): Linear(in_features=100, out_features=1024, bias=True)
(1): ReLU()
(2): Linear(in_features=1024, out_features=1024, bias=True)
(3): ReLU()

)
(mean_linear): Linear(in_features=1024, out_features=action_dim , bias

=True)
(log_std_linear): Linear(in_features=1024, out_features=action_dim ,

bias=True)
)
ContrastiveModel(
(model): Sequential(
(0): Linear(in_features=100, out_features=1024, bias=True)
(1): ReLU()
(2): Linear(in_features=1024, out_features=1, bias=True)

)
)
BCEWithLogitsLoss()

)

H.3 Hyperparameters

When tuning our algorithm, we left all RAD hyperparameters fixed except init_steps, which we
increased to equal 10 episodes across all domains to provide adequate coverage for pretraining.
We compensated for this change by adding (init_steps - 1K) catchup learning steps to ensure both
methods had the same number of RL updates. This means our method is at a slight disadvantage,
since RAD can begin learning from reward information after just 1K steps, but our method must
wait until after the first 10 episodes of uniform random exploration. Otherwise, we only considered
changes to the Markov hyperparameters (see Table 5). We set the Markov learning rate equal to the
RAD learning rate for each domain (and additionally considered 5e-5 for cheetah only). We tuned
the LInv loss coefficient within {0.1, 1.0, 10.0, 30.0}, and the LSmooth loss coefficient within {0,
10.0, 30.0}. The other hyperparameters, including the network architecture, we did not change from
their initial values.
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Hyperparameter Value

Augmentation
Walker Crop
Others Translate

Observation rendering (100, 100)
Crop size (84, 84)
Translate size (108, 108)
Replay buffer size 100000
Initial steps 1000
Stacked frames 3
Action repeat 2; finger,

walker
8; cartpole
4; others

Hidden units (MLP) 1024
Evaluation episodes 10
Optimizer Adam

(β1, β2)→ (φ, π,Q) (.9, .999)
(β1, β2)→ (α) (.5, .999)
Learning rate (φ, π,Q) 2e-4, cheetah

1e-3, others
Learning rate (α) 1e-4

Batch size 128
Q function EMA τ 0.01
Critic target update freq 2
Convolutional layers 4
Number of filters 32
Non-linearity ReLU
Encoder EMA τ 0.05
Latent dimension 50
Discount γ .99
Initial temperature 0.1

Table 4: RAD hyperparameters

Hyperparameter Value

Pretraining steps 100K
Pretraining batch size 512
RAD init steps (20K / action_repeat)
RAD catchup steps (init_steps - 1K)
Other RAD parameters unchanged
Loss coefficients
LInv 30.0 ball,

reacher
1.0 others

LRatio 1.0
LSmooth 30.0 ball,

reacher,
cheetah

10.0 others
Smoothness d0 0.01
Conditional samples, nc 128
Marginal samples, nm 128
Optimizer Adam

(β1, β2)→ (Markov) (.9, .999)
Learning rate 2e-4 cheetah

1e-3 others
Table 5: Markov hyperparameters
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I Additional Representation Visualizations

Here we visualize abstraction learning progress for the 6× 6 visual gridworld domain for six random
seeds. Each figure below displays selected frames (progressing from left to right) of a different
abstraction learning method (top to bottom): LMarkov; LInv only; LRatio only; autoencoder; pixel
prediction. The networks are initialized identically for each random seed. Color denotes ground-truth
(x, y) position, which is not shown to the agent. These visualizations span 30,000 training steps
(columns, left to right: after 1, 100, 200, 700, 3K, 10K, and 30K steps, respectively). In particular, the
third column from the right shows the representations after 3000 steps, which we use for the results
in the main text. We show additional learning curves for the final representations in Appendix J.

Seed 1 Seed 2

Seed 3 Seed 4

Seed 5 Seed 6

Figure 7
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J Gridworld Results for Increased Pretraining Time

Since some of the representations in Appendix I appeared not to have converged after just 3000
training steps, we investigated whether the subsequent learning performance would improve with
more pretraining. We found that increasing the number of pretraining steps from 3000 to 30,000
improves the learning performance of φRatio and φAutoenc and φPixelPred (see Figure 8), with the
latter representation now matching the performance of φMarkov .

It is perhaps unsurprising that the pixel prediction model eventually recovers the performance of the
Markov abstraction, because the pixel prediction task is a valid way to ensure Markov abstract states.
However, as we discuss in Sec. 3.2, the pixel prediction objective is misaligned with the basic goal of
state abstraction, since it must effectively throw away no information. It is clear from Figures 7 and 8
that our method is able to reliably learn a Markov representation about ten times faster than pixel
prediction, which reflects the fact that the latter is a fundamentally more challenging objective.

Figure 8: Mean episode reward for the visual gridworld navigation task, using representations that were pretrained
for 3,000 steps (left) versus 30,000 steps (right). Increased pretraining time improves the performance of φRatio,
φAutoenc and φPixelPred. (300 seeds; 5-point moving average; shaded regions denote 95% confidence intervals.)
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K DeepMind Control Experiment with RBF-DQN

Recently, Asadi et al. (2021) showed how to use radial basis functions for value-function based
RL in problems with continuous action spaces. When trained with ground-truth state information,
RBF-DQN achieved state-of-the-art performance on several continuous control tasks; however, to
our knowledge, the algorithm has not yet been used for image-based domains.

We trained RBF-DQN from stacked image inputs on “Finger, Spin,” one of the tasks from Section
7, customizing the authors’ PyTorch implementation to add our Markov training objective. We do
not use any data augmentation or smoothness loss, and we skip the pretraining phase entirely; we
simply add the Markov objective as an auxiliary task during RL. Here we again observe that adding
the Markov objective improves learning performance over the visual baseline and approaches the
performance of using ground-truth state information (see Figure 9).

Figure 9: Mean episode reward for RBF-DQN on “Finger, Spin” with Markov, visual, and expert features.
Adding the Markov objective dramatically improves performance over the visual baseline. (Markov – 5 seeds;
Visual – 6 seeds; Expert – 3 seeds; shaded regions denote 95% confidence intervals).
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L Investigating the Value of Smoothness in Markov Abstractions

Given a Markov abstraction φ, we can always generate another abstraction φ′ by adding a procedural
reshuffling of the φ representation’s bits. Since the φ′ representation contains all the information that
was in the original representation, φ′ is also a Markov abstraction. However, the new representation
may be highly inefficient for learning.

To demonstrate this, we ran an experiment where we optionally relabeled the positions in the 6× 6
gridworld domain, and trained two agents: one using the smooth, true (x, y) positions, and one using
the non-smooth, relabeled positions. Although both representations are Markov, and contain exactly
the same information, we observe that the agent trained on the non-smooth positions performed
significantly worse (see Figure 10).

The loss term LSmooth used in Section 7 penalizes consecutive states that are more than d0 away
from each other, thereby encouraging representations to have a high degree of smoothness in addition
to being Markov. This approach is similar to the temporal coherence loss proposed by Jonschkowski
& Brock (2015).

Figure 10: Mean episode reward for the 6 × 6 gridworld navigation task, comparing original (x, y) position
with rearranged (x, y) position. (300 seeds; 5-point moving average; shaded regions denote 95% confidence
intervals).
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M DeepMind Control Ablation Study

We ran an ablation study to evaluate which aspects of our training objective were most beneficial for
the DeepMind Control domains. We considered the RAD implementation and its Markov variant
from Section 7, as well as modifications to the Markov objective that removed either the pretraining
phase or the smoothness loss, LSmooth (see Figure 11).

Overall, the ablations perform slightly worse than the original Markov objective. Both ablations still
have better performance than RAD on three of six domains, but are tied or slightly worse on the
others. Interestingly, removing pretraining actually results in a slight improvement over Markov on
Finger. Removing smoothness tends to degrade performance, although, for Cheetah, it leads to the
fastest initial learning phase of any method.

We suspect the results on Cheetah are worse than the RAD baseline because the experiences used to
learn the representations do not cover enough of the state space. Learning then slows down as the
agent starts to see more states from outside of those used to train its current representation. As we
point out in Section 3.6, it can be helpful to incorporate a more sophisticated exploration strategy to
overcome these sorts of state coverage issues. Our approach is agnostic to the choice of exploration
algorithm, and we see this as an important direction for future work.

Figure 11: Ablation results for DeepMind Control Suite. Each plot shows mean episode reward vs. environment
steps. (Markov and RAD – 10 seeds; others – 6 seeds; 5-point moving average; shaded regions denote 90%
confidence intervals).
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