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The Markov Property

A decision process is Markov if each state x is a sufficient statistic,

given any action a, for predicting the distribution over next states x'

and the expected reward » —no additional history is required.
T(z' |a,z) =T (' | a,z,{as_1,Zs—1,"--})

R(z',a,z) = R(z',a,z,{at—1,%t—1, -+ })

State Abstraction

An abstraction ¢ : X — Z maps ground states x to abstract states
z = ¢(x), with the hope that learning is more tractable in Z.

Any abstraction ¢, when applied to an MDP M, induces a new
abstract MDP My = (Z, A, T ;, R ;,7), whose dynamics may
depend on the current time step 1, or the agent’s behavior policy 7,
and crucially, which is not guaranteed to be Markov.
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Example: An MDP and a non-Markov abstraction. The abstract
transition probabilities depend on history beyond just the most
recent abstract state.

Theorem 1: Markov State Abstractions

Given an MDP and an abstraction ¢, if the following conditions hold,

for any abstract policy:

1. The grounclal'and abstract Pr(a|z', z) = Pr(a|a:', )
state transitions have equal
iInverse model probabilities
2. The grounclzl'and abstract Pr(z'|z) Pr(z'|z)
state transitions have equal D ( ,) = P ( ,)
r(z r(x

next-state density ratios

Then ¢ is a Markov abstraction.
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System Architecture

An encoder ¢ maps ground
states x to abstract states z,
which are then used as inputs
for an abstract state-transition
discriminator and an inverse
dynamics model. The agent’s
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Training a model to both

discriminate and explain
state transitions encourages
Markov abstract states that
Improve RL performance.
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Gridworld Results. Markov state abstractions fully
close the representation gap, matching expert (x,y).
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Representation Learning Progress of a 2-D Markov state abstraction for a 6x6
visual gridworld. Color denotes ground-truth (x, y) position (not shown to agent).
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DeepMind Control Suite Results. Markov state abstractions lead to state-of-the-art learning performance over baseline RAD.
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