
	
Memristor	 Software	 Simulation	

Cameron	 Allen	

Sponsor: Sameer Sonkusale
Advisor: Ron Lasser

Abstract	

In 2008, a research team at HP announced that they had discovered a new circuit element – the

memristor [2]. This discovery was arguably as important as that of the resistor, capacitor, or

inductor. Since the HP announcement, researchers and engineering professionals have been

trying to understand the new technology and to develop potential applications. To do this, they

need robust circuit simulation software that allows them to explore how memristors work

alongside existing components. This project surveyed the available simulation tools and

ultimately introduced a new one. The end result was a modified version of SPICE that had built-

in support for memristors, and which was in several ways better than the existing software

programs.

Cameron Allen Memristor Software Simulation EE 98

 Page 2 of 10

Introduction	

The memristor, short for “memory resistor”, is a fourth type of basic circuit element. It is a two-

terminal device whose behavior is characterized by a relationship between the time integrals of

current and voltage. This type of relationship can be observed in a wide variety of nanoscale

devices, but it was first understood in metal-oxide crossbar switches [2]. True to its name, the

memristor operates as a sort of resistor with memory. In general, the resistance of the device is

constant except in the presence of an electric field: if a positive voltage is applied across a

memristor, the resistance increases, and if a negative voltage is applied, the resistance decreases.

Because of this unique behavior, there is speculation that memristors could have applications

from high-density, non-volatile memory to modeling brain synapses in neural networks [5, 6].

For now, the biggest obstacle to memristor application development and circuit design is that

memristors are so new. Traditional circuit theory doesn’t apply to memristors in the majority of

situations, and although memristors are fairly easy to fabricate, it can be difficult to acquire a

large number of them. For now, this means software simulation is probably the easiest way to

explore memristor behavior. At the beginning of this project, all of the freely available

simulation models had significant limitations, and none of them could reliably model memristor

behavior. The goal of this project was to create a simulation tool that worked with existing

circuit components, but which also had strong support for modeling memristors, across a wide

variety of circuit classes.

Problem	 Background	

Memristors can be fabricated in a number of ways, but perhaps the most widely known version is

the platinum/titanium-oxide/platinum memristor that HP developed in 2008 [2]. In their device,

the titanium-oxide layer had oxygen vacancies on one side that acted as charge carriers and

improved conductance (see Fig. 1a). These oxygen vacancies had an effective positive charge,

and unlike traditional semiconductor devices, they were not fixed in place due to lattice bonds.

This meant that in an electric field, the oxygen vacancies were free to move throughout the

length of the device, even into the pure region of the metal-oxide.

Cameron Allen Memristor Software Simulation EE 98

 Page 3 of 10

The simplest equivalent model for HP’s device is two variable resistors, connected in series (see

Fig. 1b): a resistor RON that is fairly small, representing the oxygen-depleted layer of the oxide;

and a resistor ROFF that is several orders of magnitude larger, representing the pure layer [2]. If L

is the length of the device, and x is the length of the doped (oxygen-poor) region, then an

expression for the total resistance is given by:

�

R = RON
x(t)
L

+ ROFF 1
x(t)
L

 (Eqn. 1)

The resistance then, is a function of the current doping profile of the device. Eqn. 1 assumes that

the doping profile is approximately a step function, but the result could certainly be generalized

to more complicated profiles.

It is important to notice that the doping profile is time-dependent. The rate that the profile

changes is limited by how fast the vacancies can move. When put in terms of electrical mobility:

�

dx
dt

= µvE (Eqn. 2)

Fig. 1a – Diagram of Memristor Doping Profile

Fig. 1b – Memristor Equivalent Circuit Model

Cameron Allen Memristor Software Simulation EE 98

 Page 4 of 10

where µv is the mobility of the vacancies, and E is the electric field. Eqn. 2 does not take into

account the boundary conditions: as x approaches 0 or L, dx/dt should approach zero, since the

vacancies cannot move past the ends of the device. This means the resistance is always in the

range [RON, ROFF], regardless of the input voltage.

There are a number of papers circulating that describe ways of modeling this type of memristor

behavior with software [3, 7, 8]. However, only one of these models was found to be compatible

with any of the latest versions of the SPICE circuit simulator [7]. After some testing, the one

model that did work was found to be inadequate for modeling memristors in situations where the

length of the doped region (x) approached either boundary. The simulation would become

unstable and would produce results that did not make physical sense. A simulation that could

accurately model these boundary conditions and that still supported existing circuit components

would certainly have value for those interested in learning about or developing memristor

circuits.

Method	 of	 Solution	

Exploring	 the	 Alternatives	

The beginning of the project was mostly comprised of researching memristors and existing

simulation methods, including both hardware and software. A significant portion of time was

spent exploring simulation programs that were not compatible with the available versions of

SPICE. The only sub-circuit model that SPICE could interpret was the one by Rák and Cserey

[]. Unfortunately, this model was not able to simulate a simple memristor/voltage source circuit

at low frequencies or DC, because the component responsible for keeping track of the state

variable (the capacitor Cmem) could not appropriately handle the boundary conditions. The

simulation would fail with an “out of range” error and report that the time step was too small.

No time step was found to be small enough to prevent this error, and it would occur any time the

memristor state variable reached its physical limits.

To try to remedy this problem, several alternative simulation options (including SPICE,

MATLAB, Simulink, and C/C++) were evaluated based on functionality, ease of use, portability,

and strength of existing circuit modeling support. SPICE was determined to be the best

Cameron Allen Memristor Software Simulation EE 98

 Page 5 of 10

alternative – that is, the SPICE program itself, not just another sub-circuit implementation.

SPICE was already one of the industry standard analog circuit simulation programs, and because

it was also open source, it quickly became the clear choice for implementing a custom memristor

module.

Configuring	 SPICE	 for	 Mac	 OS	 X	

The first step in writing a module for SPICE was to make sure it would compile from source [].

This involved modifying configuration files, changing system-specific file paths, and linking

against the appropriate libraries. The system chosen for development was one running Mac OS

X 10.6, because of convenience and the fact that the operating system was Unix-based.

However, since the newest version of Berkeley SPICE (3f5) was written over 10 years ago, the

existing “mac” setting was inevitably out-of-date. A new setting called “macosx” was created

and configured to allow SPICE to compile on the newer operating system.

Copying	 an	 Existing	 Component	

Once SPICE was properly configured, compiled, and verified with some example circuits, the

next step was to begin the process of creating a memristor module. The SPICE code was written

in C, and it was divided into a number of modules already. Indeed, all of the native components

for SPICE had their own separate folders. There were also modules for input parsing, various

numerical methods, and the simulator itself. It seemed logical to copy an existing component

and modify its behavior to emulate that of a memristor, rather than trying to write one from

scratch. The obvious choice of starting component was the resistor, since it had by far the

closest behavior to a memristor of all the native SPICE components.

The resistor module “res” was copied and renamed “mem”, and all references to resistors inside

were replaced with their memristor equivalents. It was also necessary to add the “mem” library

to the configuration files, as well as to add new input parsing logic. Most netlist prefixes in

SPICE are reserved for existing components (e.g. “r” for resistor), so the prefix choice (“a”) for

memristor was based solely on availability. The source code was recompiled to incorporate the

custom module for memristors (although so far, they had no difference in behavior from

resistors), and then checked with a few test circuits. The testing amounted to replacing “r” with

“a” in the netlists, and verifying that SPICE still produced the same output.

Cameron Allen Memristor Software Simulation EE 98

 Page 6 of 10

Modifying	 the	 Load	 Function	

The final step – changing the code to accurately reflect memristor behavior – was the most

complicated. Luckily, it turned out that a good portion of the work involved in reporting the

resistance value was in one particular file (“memload.c”, modified from “resload.c”). The

resistor code simply loaded a single conductance value into the four positions of a 2x2 matrix.

For short time steps, the new device had to look essentially like a resistor, so there just needed to

be a custom function to update the conductance value immediately before it was loaded into the

matrix. This update/load functionality was also how SPICE handled more complicated devices

such as capacitors and diodes.

Modifying the load function required adding several new model variables to handle things like

RON, ROFF, µV, x, and L. There were also some changes to be made to the initialization function.

The memristor module was implemented using Equations 1 and 2, and then the code was tested

for a simple memristor/voltage source circuit.

But the new module didn’t work as anticipated. In fact, the incorrect results that it produced

revealed some unexpected properties of the simulation algorithm. It turned out that SPICE used

a variable step size, which could be increased or decreased as necessary to improve performance

– a fairly standard technique in numerical analysis. This particular variable-step algorithm,

however, would frequently revisit time points it had previously seen, if the algorithm happened

to decide that it needed a smaller step at those time points. The updates to the resistance value in

the memristor module did not take these time-jumps into account. This lack of awareness hadn’t

mattered for a normal resistor, but since the memristor was so time-dependent, a new problem

manifested itself, wherein the simulation tried to revert to a previous time point, but the

memristor wrongly kept its newer state.

Handling	 the	 “Time-‐Jumps”	

Solving the time-jump problem required storing old resistance values in a data structure that

would allow lookups based on specific time values. Ideally the data structure wouldn’t require

much memory, but more importantly it needed to be able to find resistance values quickly, since

it would likely do that a great deal during simulation. The implementation was a modified

version of a linked-list of resistance/time pairs, which would be reset after every time a

Cameron Allen Memristor Software Simulation EE 98

 Page 7 of 10

resistance value was looked up. The implementation took advantage of the fact that none of the

time-jumps ever went to a time prior to that of the previous time-jump. To put it another way,

once the simulation had requested a particular time/resistance value, the entire rest of the list

could be deleted, with no actual loss of data. This allowed for much quicker lookups than would

have otherwise been possible, since the program did not have to traverse nearly as many nodes in

the list before finding the one it needed.

With this modification to the update function, the memristor/voltage source circuit began

simulating as expected (see the Results section). At this stage, there were only a few more minor

features to add; namely, support for model input parameters in the netlist and support for a non-

linear window function such as the one described in Biolek et al. []. With these adjustments, the

memristor SPICE module was effectively finished (as soon as support could be added for

operating systems besides Mac OS X).

Results	 and	 Analysis	

The outcome of the project was a modified version of SPICE with native support for memristors.

It was a command-line application that used the standard SPICE netlist syntax (plus a new prefix

“a” for memristors) and supported graphical plotting using the X Window System (see Fig. 2).

The program also allowed for memristor model parameters to be enumerated in the netlist, in

order to specify device length, vacancy mobility, and minimum, maximum, and starting

resistance. The module theoretically would work with any existing SPICE component (as well

as with combinations of components and sub-circuits), provided that the time step was small

enough.

It was impossible to test every circuit configuration, so verification concentrated on simply

ensuring that the configurations that had been investigated with the Rák and Cserey simulator

would simulate correctly. Firstly, the new program was able to correctly simulate the circuit

configurations where the Rák and Cserey simulator had performed as expected (see Fig. 2c).

Second, perhaps more importantly, the new program could even handle the configurations that

had caused the Rák and Cserey simulator to fail. There were no more “out of range” errors, and

the results were consistent with the expectations for a memristor experiencing hard switching –

Cameron Allen Memristor Software Simulation EE 98

 Page 8 of 10

the same hysteresis loops in the current-voltage graph, except with flattened portions where the

resistance reached a maximum or minimum value (see Fig. 2d).

Although the final program was able to simulate memristors better than the Rák and Cserey

model, it still had a number of drawbacks. First, it was only built to run on Mac OS X. In order

to become widely used as a simulation tool, it likely needed to support either Windows or

Linux/Unix (or both). Second, it needed more extensive testing, and full support for

temperature, noise, and sensitivity analyses (all of which were ignored in the interest of time).

Third, the “a” netlist prefix needed to be changed to something more permanent and

professional. The “m” prefix was already being used to mean a generic model, but it could have

been extended to allow for memristors as well. None of these were requirements for modeling

transients in memristor circuits, but most (if not all) of them would likely need to be

implemented for the software to be a complete package.

Fig. 2a – Command-Line Interface Fig. 2b – Netlist Syntax

Fig. 2c – Memristor Hysteresis
Current-Voltage Loops

Fig. 2d – Memristor Hysteresis
Loops During Hard Switching

Cameron Allen Memristor Software Simulation EE 98

 Page 9 of 10

Conclusions	

The final program showed a great deal of potential as a tool for modeling memristor circuits. It

improved on previous software simulation tools by implementing memristors natively, and by

accurately modeling memristor circuit configurations that caused previous simulators to fail.

There is certainly room for improvement and additional features, but even in its current form, the

program can provide significant value to electrical and computer engineers, both in industry and

in academia.

Overall the project afforded the opportunity to work with cutting-edge technology at the

intersection of analog electronics and software development. It was also a learning experience –

one that taught about designing new modules for existing software, as well as debugging and

testing that software to make sure it’s working correctly. Most importantly, provided the

opportunity to practice things like managing large-scale and long-term projects. The end result

was a memristor simulation program that in many ways was better than any of the alternatives,

and with a few modifications, it may even help to shape the path for memristor circuit

development in the years to come.

References	
1. “Memristor – the missing circuit element,” L. Chua. IEEE Journals 18, 507-519 (1971)

2. “The missing memristor found,” D. Strukov, G. Snider, D. Stewart, R. S. Williams.

Nature 453, 80-83 (2008)

3. “SPICE Model of Memristor with Nonlinear Dopant Drift,” Z. Biolek, D. Biolek, V.

Biolkova. Czech Republic University of Defense. (2009)

4. “Memristive switching mechanism for metal/oxide/metal nanodevices,” J. J. Yang, M.

Picket, X. Li, D. Ohlberg, D. Stewart, R. S. Williams. Nature Nanotechnology 4, 429 -

433 (2008)

5. “How we found the missing memristor,” R. S. Williams. IEEE Spectrum (Dec. 2008)

6. “H.P. Sees a Revolution in Memory Chip-Making,” J. Markoff. New York Times

(Apr. 2010)

Cameron Allen Memristor Software Simulation EE 98

 Page 10 of 10

7. “Macromodeling of the Memristor in SPICE,” Ádám Rák and György Cserey. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems 29, 632 -

636 (Apr. 2010)

8. “The fourth element: characteristics, modelling [sic] and electromagnetic theory of the

memristor,” O. Kavehei, A. Iqbal, Y. S. Kim, K. Eshraghian, S. F. Al-Sarawi, D. Abbott.

Proceedings of The Royal Society A 466, 2175-2202 (Mar. 2010)

9. “HP nano device implements memristor,” S. Bush. Electronics Weekly (May 2008)

10. “Memristors…Made of Blood?” R. Courtland. IEEE Spectrum (Apr. 2011)

11. “Memristors,” C. Allen. Dept. of Electrical and Computer Engineering, Tufts University.

(May 2010)

