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Abstract

Optimistic initialization underpins many theoretically sound
exploration schemes in tabular domains; however, in the deep
function approximation setting, optimism can quickly dis-
appear if initialized naı̈vely. We propose a framework for
more effectively incorporating optimistic initialization into
reinforcement learning for continuous control. Our approach
uses metric information about the state-action space to es-
timate which transitions are still unexplored, and explicitly
maintains the initial Q-value optimism for the corresponding
state-action pairs. We also develop methods for efficiently ap-
proximating these training objectives, and for incorporating
domain knowledge into the optimistic envelope to improve
sample efficiency. We empirically evaluate these approaches
on a variety of hard exploration problems in continuous con-
trol, where our method outperforms existing exploration tech-
niques. All code to reproduce experiments can be found at
this link.1

Introduction
Reinforcement learning is the study of learning to maximize
cumulative reward while interacting with an environment
(Sutton and Barto 2018). Many tasks of interest have a nat-
urally sparse reward signal, for example reaching a goal or
satisfying a given condition. Learning in this case is signif-
icantly harder than when rewards are naturally dense, be-
cause the agent may not receive any guiding signal during
most of its training. A common approach in these cases is to
augment the sparse reward with a dense reward built using
domain knowledge, to guide training in helpful directions
(Randløv and Alstrøm 1998). However, there are three prob-
lems with this approach. First, it is not always clear how to
construct such a reward signal. Second, the learned policy
under this changed reward function may no longer be op-
timal (or even good) in the original task (Ng, Harada, and
Russell 1999). Finally, this approach may not be enough to
ensure sufficient exploration in challenging exploration do-
mains.

In the absence of a dense learning signal, the agent needs
alternative ways to motivate its decision-making. A com-
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mon approach is optimistic initialization in which unob-
served transitions are assumed to be maximally desirable un-
til proven otherwise, thus encouraging the agent to explore
(Brafman and Tennenholtz 2002; Strehl et al. 2006; Jaksch,
Ortner, and Auer 2010). In the discrete state-action set-
tings, optimistic initialization is well understood and leads
to strong theoretical regret bounds (Strehl et al. 2006). When
using function approximation, however, naı̈ve attempts at
optimistic initialization are quickly learned away due to gen-
eralization (Rashid et al. 2020; Machado, Srinivasan, and
Bowling 2015).

We introduce Deep Optimistic Initialization for Explo-
ration (DOIE), a novel, practical method for optimistically
initializing value functions that enables precise control over
the effect of generalization on optimism. Our method uses
a nearest-neighbors-based optimism module that identifies
the degree to which state-action pairs are similar to those al-
ready observed by the agent. We then compute an optimistic
value function by using this similarity measure to interpo-
late between a learned value-estimate and an optimistic en-
velope that describes an upper bound of the optimal value
function. In contrast to an engineered dense reward, this en-
velope can be defined using very little domain knowledge.
However, through value shaping, more domain knowledge
can be used to define a tighter envelope and speed up learn-
ing.

DOIE drastically improves exploration in sparse-reward
domains, and is amenable to principled approximation
schemes which allow for its use over long time scales. In
the limit of complete exploration this method reduces to
standard Q-learning and therefore does not modify the fixed
point optimal policy. On the other extreme, with no interac-
tion, the effective Q function is the optimistic envelope, thus
satisfying optimistic initialization.

We empirically investigate our method’s behavior on a va-
riety of challenging sparse reward continuous control prob-
lems, demonstrating state-of-the-art performance on a maze
navigation domain and improved sample-efficiency com-
pared with exploratory baselines on sparse-reward tasks in
the DeepMind Control Suite (Tassa et al. 2018).

Background
We consider sequential decision making problems repre-
sented as Markov Decision Processes (MDPs) denoted by
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hS; A ; T; R; P0;  i , whereS, A and  are the state space,
action space, and the discount factor, respectively. The tran-
sition and reward functions are given byT(s; a) andR(s; a)
respectively, andP0(s) is the initial state distribution. In this
work we focus oncontinuous controlproblems with con-
tinuous state-and-action spaces. We further de�ne the state-
action space asX := S � A and denote a point in that space
asx := concat(s; a).

We seek to learn an action-selection strategy, orpolicy,
which results in high cumulative discounted reward. For a
given policy� , we de�ne the state-action value function, or
Q-function:

Q� (st ; at ) = E� [R(st ; at ) + Q � (st +1 ; � (st +1 )]:

We can extract a policy from a given Q-function by choosing
the action with maximum value:

� Q (s) = arg max
a

Q(s; a):

A common method of iteravely improving a Q function pa-
rameterized by� is through temporal difference (TD) learn-
ing (Sutton 1988; Watkins and Dayan 1992):

�  � + �� � � Q̂(s; a; � )

where � = r +  max
a0

Q̂(s0; a0; � ) � Q̂(s; a; � ) (1)

and (s; a; r; s0) tuples are drawn from experience. The
�xed point of this update equation is the Q-function that de-
scribes theoptimalpolicy:

Q� (st ; at ) = E� � [R(st ; at ) +  max
a0

Q� (st +1 ; a0)]

To have principled generalization with continuous states
and actions, methods generally require an understanding of
which interactions are similar to others (Kakade, Kearns,
and Langford 2003). We formalize this by having access to
a metric over the spaceX , characterized by a distance func-
tion d(x1; x2).

Related Work
The problem of exploration with sparse rewards has been
thoroughly studied in tabular domains (Brafman and Ten-
nenholtz 2002; Strehl et al. 2006; Kearns and Singh 2002).
A prevailing approach for exploration in such domains is
optimism in the face of uncertainty(OFU), where the agent
assumes high value for unobserved state-actions to drive it-
self towards new experience (Jaksch, Ortner, and Auer 2010;
Ortner and Auer 2007; Brafman and Tennenholtz 2002). In
Q-learning, OFU can be implemented throughoptimistic ini-
tialization, a method in which the Q-table is initialized to
some maximum value and carefully lowered towards the em-
pirical estimates (Strehl et al. 2006).

However, tabular exploration methods are impractical in
high-dimensional or continuous environments, where an in-
�nite number of different states are realizable. Modern ma-
chine learning methods have scaled to such problems using
deep function approximation, where the Q-value of each ac-
tion is represented as the output of a neural network (Mnih

et al. 2015). In continuous control problems, deriving a pol-
icy from this Q-function is non-trivial, as it requires �nding
the maximum action-value over a continuous space of ac-
tions. A common strategy is to train apolicy networkto �nd
the maximum-value action for a given state; however un-
der this framework, optimistic modi�cations to a Q-function
are not immediately re�ected in the policy. To more directly
investigate the effect of optimistic Q-values, we apply our
exploration algorithms on top of RBFDQN (Asadi et al.
2021), a continuous control architecture that achieves state-
of-the-art performance by extracting a policy directly from
its value function without using a policy network. However,
as demonstrated in Appendix 3, our approach can also be ap-
plied to state-of-the-art policy-based methods, with similar
results.

A variety of works attempt to generate more scalable
forms of optimism to aid exploration in the function-
approximation setting. Prior work has investigated modify-
ing the bias term of a Q-function to induce optimistic initial-
ization (Machado, Srinivasan, and Bowling 2015), though
this form of optimism can be quickly learned away in the
deep function approximation setting. Various other methods
have introduced novelty-bonuses to aid exploration. Notable
examples include bonuses based on density estimation and
pseudocounts (Bellemare et al. 2016; Ostrovski et al. 2017),
the error of predicting a random neural network's output
(RND) (Burda et al. 2019), and the error of predicting an
environment's transition dynamics (model-predictive error,
or MPE) (Houthooft et al. 2016; Pathak et al. 2017). These
bonuses can be applied both during bootstrapping (Belle-
mare et al. 2016) and during action-selection (Rashid et al.
2020). Though these methods scale to large problems, they
often do not utilize information which may be known about
an environment's structure.

In more structured environments, an agent can fre-
quently take advantage of metric-based learning (Kakade,
Kearns, and Langford 2003). Recent theoretical results have
bounded cumulative regret by assuming Lipschitz continuity
of either the optimal Q-function or the transition function, in
both deterministic (Ni, Yang, and Wang 2019) and stochas-
tic (Pazis and Parr 2013; Touati, Taiga, and Bellemare 2020)
domains. However, due to their restrictive assumptions these
methods may be computationally impractical to apply as the
dimensionality of the learning domain increases.

An additional way to improve exploration performance
is by incorporating domain knowledge into learning algo-
rithms. For example, in discrete MDPs, specifying tighter
upper bounds for Q-values can increase learning speed (Abel
et al. 2018). For online learning, potential-based reward
shaping biases exploration towards user-de�ned “high po-
tential” regions of the state space (Ng, Harada, and Russell
1999). When a goal-state is known, various goal-diversity
methods can be used to improve exploration (Pitis et al.
2020; Trott et al. 2019). For situations where a general out-
line of the desired policy is known, de�ning initiation and
termination conditions in theoptions framework (Sutton,
Precup, and Singh 1999) biases exploration towards learn-
ing useful sub-policies.

Our work is situated at the intersection of these three lines



Algorithm 1 Iterative Covering Set Creation
Input: radius�
Initialize X̂ = fg .
for each episodedo

s  env.reset()
for each stepdo

a = � (s)
x = ( s; a)
dmin = min

(x 0)2 X̂
d(x; x 0)

if dmin > � then
X̂  X̂ [ f xg

end if
s � T(s; a)

end for
end for

of progress: bonus based exploration (Ta�̈ga et al. 2020),
RL in metric spaces (Kakade, Kearns, and Langford 2003)
and incorporating domain knowledge using shaping (Ng,
Harada, and Russell 1999). We assume continuity of the op-
timal Q function, and provide a practical method for neural-
network based learning while maintaining optimism of tran-
sitions far from those which have previously been encoun-
tered. In contrast to other bonus-based methods, we di-
rectly take advantage of the metric structure present in many
continuous control problems. We further provide a simple
method for incorporating domain knowledge into the learn-
ing algorithm for faster convergence, which in challenging
exploration problems can be more effective than a hand-
crafted dense reward (Mataric 1994).

Optimistic Initialization in Continuous MDPs
The intuition behind DOIE is to construct a modi�ed Q func-
tion that takes on an optimistic value for transitions far out-
side the agent's experience, and smoothly relaxes to empir-
ical estimates for transitions near those which have been
observed. This can be achieved through the use ofknown-
ness, a quantity which equals 1 for observed transitions, and
smoothly decays to 0 for state-actions far away from any
observations. Given a knownness function� (s; a) satisfying
these properties, we can construct an optimistic Q-function,
Q+ , as follows:

Q+ (s; a) = � (s; a)Q(s; a) + (1 � � (s; a)) Qmax (s; a):
(2)

Choosing an optimistic upper-bound whereQmax � Q�

everywhere ensures thatQ+ (s; a) � Q(s; a), and thus in-
centivizes the agent to explore regions of the state space
with low knownness.Qmax frequently can be speci�ed using
commonly-known quantities of an environment. For exam-
ple, when the maximum per-timestep rewardrmax is known,

Qmax =
r max

1 � 
:

Figure 1: A visualization of̂dmin in a 2-dimensional state-
action space. Green points at the center of each circle repre-
sent the �ltered covering-set. Blue points represent observed
state-actions. Red points represent “query points”. The blue
solid line isd̂min . Note thatd̂min = 0 for the red point within
the covering-ball, and that̂dmin � dmin always. The approx-
imationd̂min is equivalent to assuming we have encountered
every point in each green ball. If the green balls cover the
entire state-action-space, thend̂min � 0.

When an episode terminates after achieving the reward,

such as in goal-directed tasks,

Qmax = r goal:

We use this optimistic Q function for both bootstrapping:

Q(s; a)  r (s; a) + max
a0

Q + (s; a0) (3)

and action-selection:

� Q + (s) = arg max
a

Q+ (s; a): (4)

We now describe the measure of knownness for a state-
action pair. As stated earlier, we would like knownness
to quantify similarity of the state-action to previously ob-
served state-actions. We assumeX is endowed with a met-
ric, d(x1; x2), that quanti�es such similarity, as is common
in many works in continuous RL (Ni, Yang, and Wang 2019;
Asadi, Misra, and Littman 2018). We de�ne knownness as a
function of the distance to the closest state-action which the
agent has observed:

� (x) = � (dmin (x)) (5)

dmin (x) = min
x 02 X

d(x; x 0): (6)

where� (d) is a kernel function such that� (0) = 1 and
decays monotonically to zero asd goes to in�nity, andX is



the set of all previously observed state-actions. In this work
we use

� (d) =
1

1 + ( d=d0)2 (7)

whered0 is a lengthscale parameter that quanti�es how
quickly the value ofQ can change. This function mimics
the Gaussian function near the origin, but does not fall away
exponentially asd increases.

A natural metric for such a task isL 2. We can make this
metric more �exible by allowing for different weighting of
different state-action dimensions in the following way:

d(x1; x2) = jAx 1 � Ax 2j2 (8)

We note that this de�nition of knownness is similar to
one presented in prior work (Nouri and Littman 2009), ex-
cept that ours modulates only the next-state's value, rather
than the entire update target. This is more suited to continu-
ous control, where domains are often only mildly stochastic
and thus every(s; a) in an agent's experience will be largely
known, while the same cannot be said about every(s0; a0).

Covering sets for Ef�cient Knownness
The computational complexity of a na�̈ve implementation of
our knownness calculation scales linearly with the number
of state-actions visited. For tasks which require substantial
interaction to solve, this quickly becomes infeasible. We in-
troduce a simple approximation algorithm which maintains
a �ltered set of state-actions that is an� -covering of all seen
state-actions so far (Algorithm 1). A subsetX̂ of X is an
� -covering if:

8x 2 X 9x̂ 2 X̂ s.t. d(x; x̂) � �:

We de�ned̂min (x) as the distance ofx to the� -ball around
any member of the covering-set:

d̂min (x) = max
�

min
x 02 X̂

d(x; x 0) � �; 0
�

; (9)

and analogously the approximate knownness as:

�̂ (x) = � (d̂min (x)) : (10)

We choosedmin as such so that̂� (x) is an ef�ciently-
computable upper bound of the true knownness (proof in
Appendix 1):

�̂ (x) � � (x): (11)

Furthermore, ifX is a compact metric space, and̂X is an
� -covering ofX , it follows that �̂ (x) = 0 for all x 2 X .
Thus, this approximation preserves the desirable property
that knownness goes to 0 everywhere in the limit of thor-
ough exploration. Figure 1 diagrams the �ltering process and
the relationship between̂� (x) and� (x), and provides intu-
ition on the lower-bound of equation 11. We examine the
time, space, and performance tradeoffs of this approxima-
tion in our empirical results. Details for adaptive �ltering in
domains where the scale of the state space is not known a
priori can be found in Appendix 2.

Value Shaping
An attractive property of optimistic initialization is that it
allows for easy incorporation of domain knowledge through
specifying a shaped upper bound to the Q-function. At a high
level, optimistic initialization works by pinning the values
of completely unknown state-actions toQmax , and “whit-
tling down” the excess optimism through interaction, until
Q(s; a) approachesQ� (s; a). How much whittling is neces-
sary is a function of how over-optimisticQmax is. For exam-
ple, if Qmax (s; a) = Q� (s; a) then the initial policy ofQ+

will be optimal, and no further learning is necessary.

Figure 2: Fraction of state space explored by all explo-
ration methods over 2000 episodes. While both DOIE and
OMEGA eventually cover the state space, DOIE accom-
plishes it in roughly half the episodes.

Figure 3: Success percentage of Optimistic Initialization
and baselines on PointMaze over 2000 episodes. The shaded
region represents the standard deviation over 5 runs. Only
OMEGA and DOIE reach the goal in the allotted time.
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