

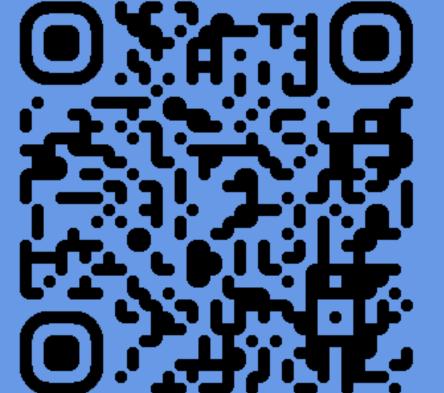
Viewing memory as a state abstraction over trajectories helps classify POMDPs

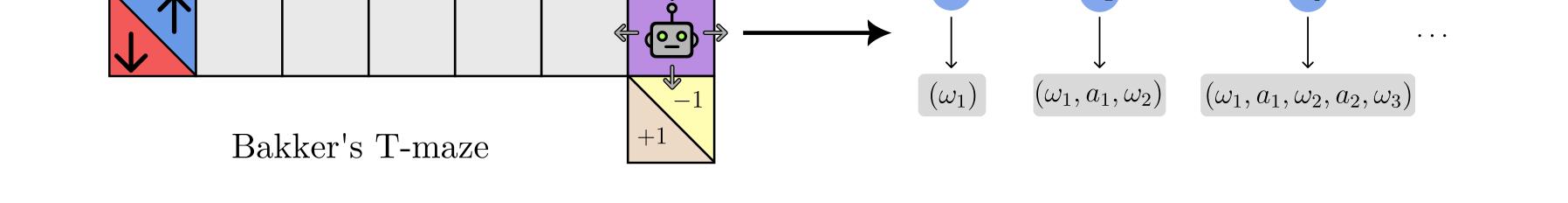
Memory as State Abstraction over Trajectories

7

3

Aaron Kirtland,* Alexander Ivanov,* Cameron Allen, Michael L. Littman, George Konidaris *Equal Contribution





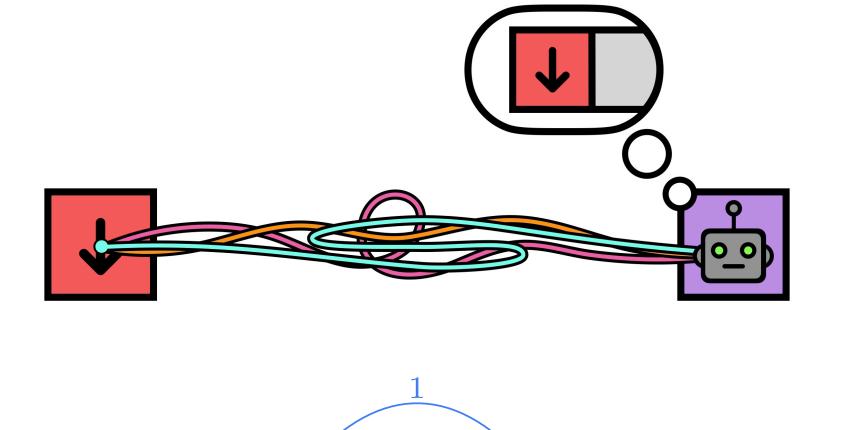
But no one wants to use the entire history, so we use memory instead.

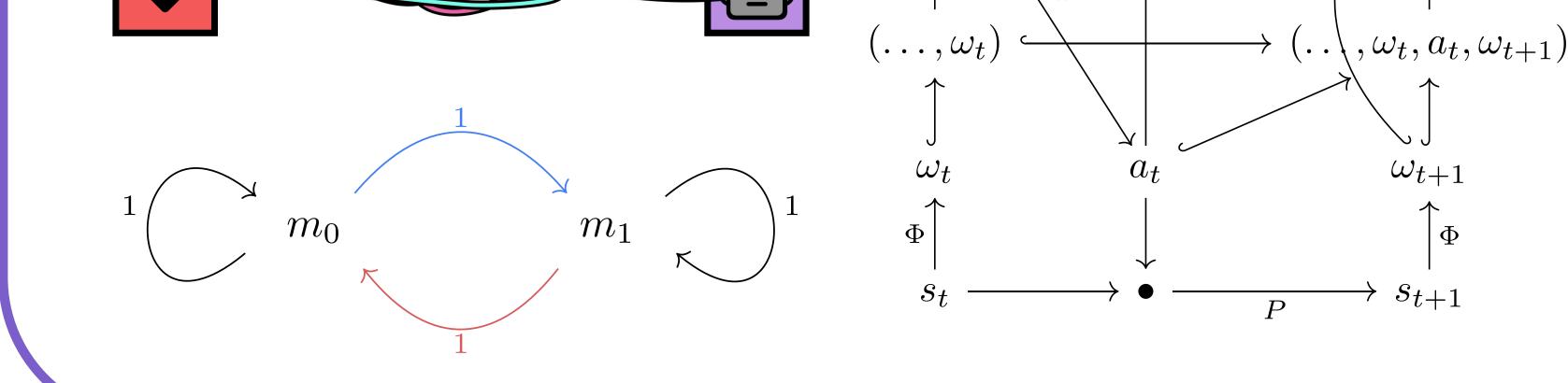
 $\xrightarrow{\mu} (m_{t+1}, \omega_{t+1})$

Memory functions induce abstractions over trajectories.

 $(m_t, \omega_t) \longrightarrow \bullet$

 ϕ





Target	E Exact State Abstractions	Approximate State Abstractions
model	$ \begin{aligned} \forall s^{(1)}, s^{(2)}.\forall \bar{s}.\forall a.\phi(s^{(1)}) &= \phi(s^{(2)}) \Rightarrow \\ R(s^{(1)}, a) &= R(s^{(2)}, a) \\ \sum_{s' \in \phi^{-1}(\bar{s})} P(s' s^{(1)}, a) &= \sum_{s' \in \phi^{-1}(\bar{s})} P(s' s^{(2)}, a) \end{aligned} $	$\begin{aligned} \exists f_P : \phi(T) \times A \to \Delta \Omega \\ \ [f_P]_{\phi} - P_o \ _1 < \epsilon_P \\ \exists f_R : \phi(T) \times A \to \mathbb{R} \\ \ [f_R]_{\phi} - R \ _{\infty} < \epsilon_R \end{aligned}$
Q^*	$ \begin{array}{l} \forall s,s'.\forall a.\phi(s)=\phi(s')\Rightarrow\\ Q^*(s,a)=Q^*(s',a) \end{array} $	$ \exists f : \phi(S) \times A \to \mathbb{R} \\ \ [f]_{\phi} - Q_M^*\ _{\infty} \le \epsilon_{Q^*} $
π^*	$ \forall s, s'. \exists a^*. \phi(s) = \phi(s') \Rightarrow Q^*(s, a^*) = \max_a Q^*(s, a) $	$\exists \pi : \phi(S) \to \Delta A \\ \left\ V_M^{[\pi]_{\phi}} - V_M^* \right\ _{\infty} \le \epsilon_{\pi^*}$
	$\max_a Q^*(s', a) = Q^*(s', a^*)$	$\ {}^{\boldsymbol{\nu}} M \qquad {}^{\boldsymbol{\nu}} M \ _{\infty} \stackrel{\leq c \pi^*}{=}$
	$\max_a Q^*(s', a) = Q^*(s', a^*)$	$\ \mathbf{V}_M - \mathbf{V}_M \ _{\infty} \leq c_{\pi^*}$
Туре	$\max_{a} Q^*(s', a) = Q^*(s', a^*)$ Optimal	$\ {}^{V}M \ _{\infty} \leq c_{\pi^*}$ Improving
		Improving
	Optimal	Improving
	$Optimal$ $\exists f_P : \phi(T) \times A \to \Delta\Omega. \ [f_P]_{\phi} - P_o \ _1 \le \epsilon_P$	$Improving$ $\forall f_P: \phi(T) \times A \to \Delta \Omega. \left\ [f_P]_{\phi} - \hat{P}_o \right\ _1 > \epsilon_F$

We can use state abstraction to define classes of POMDPs based on:

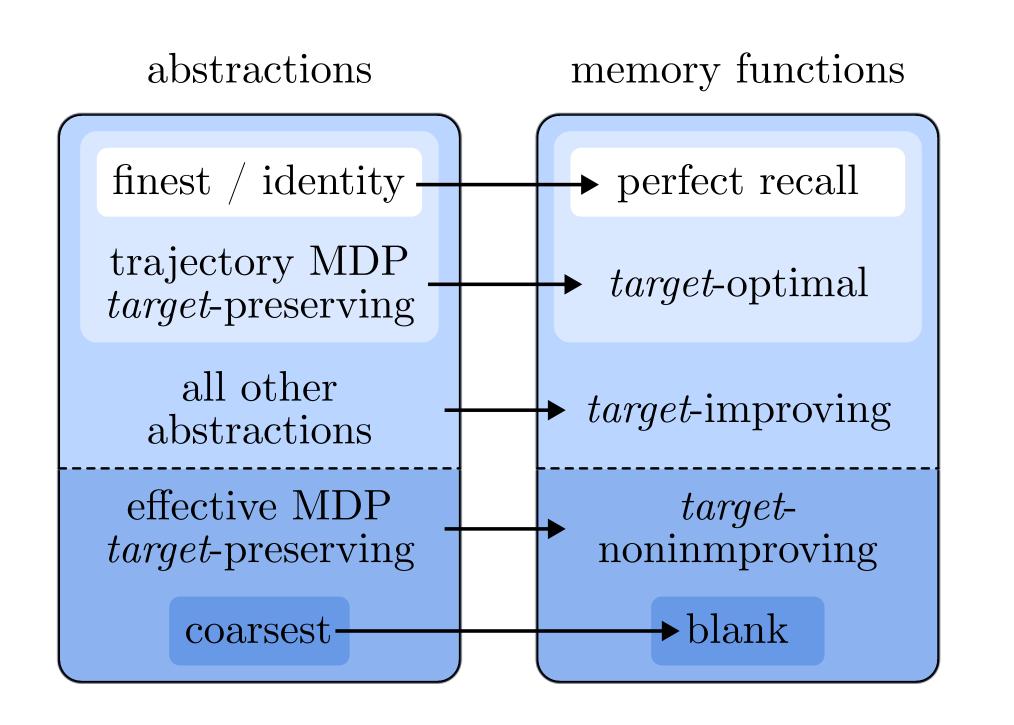
- Preservation target (π^* , Q^{*}, model)
- Stochasticity (deterministic, stochastic)

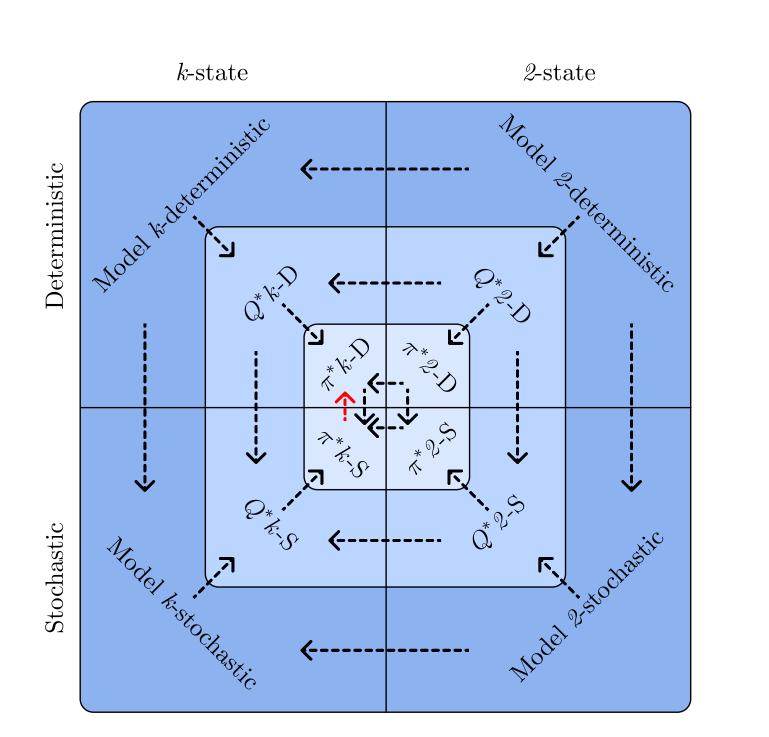
- Number of states (2, k)

- Quality (optimal, improving)

4

The state abstraction hierarchy holds!





Two additional findings:

With bounded reward, deterministic memory can approach stochastic memory

Stochastic memory may be strictly more powerful than deterministic memory

