
Memory as State Abstraction over Trajectories

Aaron Kirtland∗

Brown University
aaron_kirtland@brown.edu

Alexander Ivanov∗
Brown University

alexander_ivanov@brown.edu

Cameron Allen
University of California, Berkeley

camallen@berkeley.edu

Michael Littman
Brown University

mlittman@cs.brown.edu

George Konidaris
Brown University

gdk@cs.brown.edu

Abstract

Reinforcement learning is provably difficult in non-Markovian environments, which
motivates identifying tractable environment subclasses. We propose a systematic
structuring of POMDP subclasses that naturally arise from considering agents with
memory, which we view as a temporally-extended abstraction over the agent’s
observation-action history. We proceed by classifying memory functions as “op-
timal”, “improving”, or “neither” with respect to the same targets as in state
abstractions, namely model, optimal state-action values Q∗, and optimal policy
π∗, with each type of abstraction contained by the previous one. Additionally,
we extend traditional state abstraction to “soft” (stochastic) abstractions and show
that the abstraction hierarchy also holds for stochastic memory functions. Then,
we define classes of POMDPs by whether they admit a specific kind of memory
function. Concretely, we classify POMDPs in terms of memory functions with the
following attributes: size (number of memory states), stochasticity (deterministic,
stochastic), target (model, Q∗, π∗), and quality (improving, optimal, neither). We
prove that non-trivial relationships between these POMDP classes do not exist,
with two notable exceptions: 1) with an unbounded memory capacity, deterministic
memory can approach the expected return of finite-size stochastic memory, when
rewards are bounded; 2) with a finite memory capacity, there exist POMDPs where
stochastic memory is strictly more powerful than deterministic memory. Lastly,
we show how these classes both systematize several previously considered types
of POMDPs and, using approximate abstractions, generalize them to approximate
variants.

1 Introduction

Much of reinforcement learning makes the Markov assumption, which is unrealistic and restrictive for
many applications. Hence, it is useful to generalize MDPs to partially observable POMDPs. The class
of POMDPs is too broad, however; worst-case performance is provably difficult. Previous literature
has thus studied tractable subclasses of POMDPs that admit practical algorithms (see Section 5).

At the same time, recent memory-based approaches with recurrent neural networks (RNNs) and
learned memory controllers have met success. Yet, there has been no systematic exploration of the
space of POMDPs with respect to memory specifically.

We propose to structure the class of POMDPs by identifying structure in the memory functions which
they support. Memory functions map the agent’s history to a memory output; they are therefore

∗These authors contributed equally.

Preprint. Under review.



temporally-extended observation abstractions. This observation allows us to apply frameworks for
reasoning about state abstractions. In particular, we are interested in memory functions that preserve
or improve the agent’s ability to represent a Markov model, optimal value estimation, and optimal
policy. We also consider stochastic memory functions, which require extending the state abstraction
literature.

For example, consider Bakker’s T-maze in Figure 1 [Bakker, 2001]. The agent begins at the left end
of one of two mazes (upper/lower diagonal), with rewards of +1 or -1 at terminal states as clued by the
initial observation. The 2-state deterministic memory depicted in Figure 2 is a π∗-optimal memory
function for this environment because it perfectly recalls the initial state color, and knowledge of the
initial color and current observation is all that is necessary for the optimal policy. However, it is not a
model-optimal memory function because the agent cannot correctly predict which hallway state they
are in using only the initial observation.

+1
-1

-1
+1

Figure 1: Bakker’s T-maze environment

m0 m1
1

1

1

1

Figure 2: A π∗-optimal memory function for
the T-maze.

Concretely, we use memory functions to augment the agent’s observations and allow it to recall
features of the past to improve certain targets such as the optimal expected return, value estimation
error, and model error. In Section 2, we give a background for POMDPs, memory functions, and
state abstractions. Our contributions begin in Section 3, where we show how memory functions
induce state abstractions over a trajectory MDP defined over any POMDP, and so we can therefore
consider memory functions that preserve the traditional state abstraction targets: π∗, Q∗, or model.
Given any of these targets, we define three collections of memory functions: those that achieve
the target optimally, “optimal”; those that improve on the target compared to having no memory
whatsoever, “improving”; or those that do nothing with respect to the target, “nonimproving”. Each
of these targets defines classes of POMDPs based on whether such a memory function exists, and in
Section 4, we prove which relationships hold between these POMDP classes. Lastly, in Section 5, we
show how these classes of POMDPs systematize previously considered types of POMDPs and, using
approximate abstractions, generalize them to approximate classes.

2 Background

POMDPs: We formalize the agent’s decision problem as a partially observable Markov decision
process, a generalization of Markov decision processes where the agent cannot observe the state
directly. A POMDP is defined as a 7-tuple (S,A, P,R,Ω,Φ, γ) where S is the set of states, A is the
set of actions, P : S ×A → ∆S is the transition function, R : S ×A → R is the reward function, Ω
is the set of observations, Φ : S ×A → Ω is the observation function, and γ is the discount factor.
On each timestep, ωt ∼ Φ(st), at ∼ Φ(ωt), and st+1 ∼ P (st, at).

Memory Functions: We define a k-state memory function µ as a k-state finite state machine (FSM)
mapping a memory state m from the set M , an observation ω, and an action a, to a distribution over
new memory states m′. Formally, µ : M × Ω × A → ∆M . m0 is sampled from the initial state
distribution, and on each timestep, at ∼ π(mt, ωt) and mt+1 ∼ µ(mt, ωt, at). This flow is also
described in Figure 3.

We use FSM-based memory in this work as it produces a good model of systems like RNNs. Further-
more, its action on the POMDP can be cleanly described as augmenting the state and observation space
[Allen et al., 2024]. We allow the memory function µ to be stochastic as stochastic memory functions
are provably more powerful for goals such as improving expected return (see Subsection 4.2).

2



State Abstraction: Given an MDP with states S, a state abstraction φ is a mapping s 7→ x for x in
some abstract set of states X .2 In this work, we consider three types of state abstractions, initially
defined by [Li et al., 2006]: model, which preserves the one-step model, Q∗, which preserves the
state-action value function for the optimal policy, and π∗, which preserves optimal actions. These state
abstractions can be generalized to approximate forms and parameterized by values of ε [Abel et al.,
2016, Jiang, 2018]. These are defined using the lifting operator, which for a function f : φ(S) → X ,
is defined as [f ]φ(s) := f(φ(s)). Additionally, these definitions require the introduction of two
norms. The ∞-norm is used for scalar outputs and requires that the norm argument satisfies the
epsilon constraint for all inputs, namely states s, and, if relevant, actions a. In other words, for
f : A → B, ∥f∥∞ = maxa∈A |f(a)|. If the output is a distribution, we use a 1-norm over the
output while taking a max over all inputs. In other words, if g : A → ∆B, ∥f∥1 = maxa∈A ∥f(a)∥1
with f(a) viewed as a vector. We list the definitions for exact and approximate state abstractions in
Table 1.

Target Exact State Abstractions Approximate State Abstractions

model

∀s(1), s(2).∀s̄.∀a.φ(s(1)) = φ(s(2)) ⇒
R(s(1), a) = R(s(2), a)∑
s′∈φ−1(s̄)

P (s′|s(1),a)= ∑
s′∈φ−1(s̄)

P (s′|s(2),a)

∃fP : φ(T )×A → ∆Ω
∥[fP ]φ − Po∥1 < εP
∃fR : φ(T )×A → R
∥[fR]φ −R∥∞ < εR

Q∗ ∀s, s′.∀a.φ(s) = φ(s′) ⇒
Q∗(s, a) = Q∗(s′, a)

∃f : φ(S)×A → R
∥[f ]φ −Q∗

M∥∞ ≤ εQ∗

π∗
∀s, s′.∃a∗.φ(s) = φ(s′) ⇒
Q∗(s, a∗) = maxa Q

∗(s, a)
maxa Q

∗(s′, a) = Q∗(s′, a∗)

∃π : φ(S) → ∆A∥∥∥V [π]φ
M − V ∗

M

∥∥∥
∞

≤ επ∗

Table 1: Exact and Approximate State Abstractions

The types of abstractions form a hierarchy, as shown in Theorem 2.1. A model-preserving abstraction
is necessarily a Q∗-preserving abstraction, and a Q∗-preserving abstraction is necessarily a π∗-
preserving abstraction.

Theorem 2.1 (Abstraction hierarchy). Let (S,A, P,R, γ) be an MDP.

1. An (εP , εR)-approximate model-preserving abstraction is also a Q∗-preserving abstraction
with εQ∗ = εR

1−γ + γεPRmax
2(1−γ)2 .

2. A Q∗-preserving abstraction with εQ∗ is also a π∗-preserving abstraction with επ∗ =
2εQ∗/(1− γ).

3 Memory functions and state abstraction

3.1 Trajectory MDP and Abstraction Definitions

We would like to define classes of memory functions in terms of state abstractions. To do this, we
need to have a base MDP on which to define the abstractions. Given a POMDP, we must construct
an MDP from it. We can do this via the trajectory MDP, the MDP given by taking as states the
agent’s entire history of observations and actions. The observation-only construction was previously
considered by Timmer and Riedmiller [2009] and Hong et al. [2023].

Definition 3.1 (Trajectory MDP). Given a POMDP (S,A, P, γ,Ω,Φ, R) with initial state distribution
s0, we define the trajectory MDP to be (T,A, P ′, R′, γ), where T := {τ ∈ (Ω×A)∗ × Ω} is the
space of observation-action partial trajectories, P : τ × at 7→ τ ⊕ at ⊕ ωt+1 with ωt+1 ∼ P(·|τ, at)
and ⊕ denoting concatenation, and R′(τ = (ωt, a0, . . . , ωt), at) := Est|τ [R(st, at)]. This decision
process is Markov by definition as a trajectory τt up to time t being a prefix of τt+j implies that
P(τt+k|τt, τt−1, . . .) = P(τt+k|τt).

2Some authors call general maps “aggregation” and use “abstraction” to refer specifically to maps that
preserve model, Q∗, or π∗.

3



Next, in Table 2, we adapt the approximate state abstraction definitions (Table 1) for the trajectory
setting (i.e., abstracting the trajectory MDP T ). For now, we focus on the first column, “Optimal”;
we will discuss the second column later. For Q∗ and π∗, the resulting definition is the same, but for
model, we make an adjustment so that a good abstraction represents Markov predictions with respect
to the underlying MDP. We place an additional restriction that abstractions must preserve the present
observation. In other words, we consider φ : (Ω×A)∗ × Ω → M × Ω; i.e. φ can be written as the
product of a function (Ω × A)∗ → M and the identity function on the observation space Ω. This
resolves definitional issues that arise with considering more general memory functions and matches
the intuition that the agent should always be able to perceive the present observation.

Additionally, applying these definitions to stochastic memory functions requires an extension from
deterministic abstractions φ : S → X to soft abstractions φ : S → ∆X . To accommodate this, we
extend the definition of lifting to [f ]φ(s) := Ex∼φ(s) f(x) =

∑
x φ(x|s)f(x). Likewise, we define

the lift [f ]φ of a function on the domain φ(S)×A to be s, a 7→ Ex∼φ(s) f(x, a). The definitions in
Table 2 use this modification. Soft abstractions were previously considered by Singh et al. [1994] and
Sorg and Singh [2009]. Stochastic memory functions require this extension because the abstraction
map is defined given a memory function, and if the abstraction map were purely deterministic, then
given some trajectory τ , the (mt, ωt) pair it corresponds to would be fixed. The definitions of Q∗

and φ∗ require only minimal changes to support this generalization. The changes are hidden in the
notation here and are discussed in detail in Appendix C.

With well-defined abstractions over trajectories, we next define how memory functions induce
abstractions. This is useful so that we can define “good” memory functions in terms of known types
of abstractions. Recall that memory functions are µ : M ×A×Ω → ∆M . Given a µ, an abstraction
φ is well-defined when there exists a map φ such that the diagram in Figure 3 commutes. We can
define such a φ as:

φ
(
(ω0)

)
:= (m0, ω0); φ

(
(. . . , ωt, at, ωt+1)

)
:=
(
µ(µ(. . . µ(m0, a0, ω1), . . . ), at, ωt+1), ωt+1

)

i.e., defining the abstraction to follow single steps forward in the memory function.

Type Optimal Improving

model ∃fP : φ(T )×A → ∆Ω.∥[fP ]φ − Po∥1 ≤ εP ∀fP : φ(T )×A → ∆Ω.
∥∥∥[fP ]φ − P̂o

∥∥∥
1
> εP

∃fR : φ(T )×A → R.∥[fR]φ −R∥∞ ≤ εR ∀fR : φ(T )×A → R.
∥∥∥[fR]φ − R̂

∥∥∥
∞

> εR

Q∗ ∃f : φ(T )×A → R.∥[f ]φ −Q∗
M∥∞ ≤ εQ∗ ∀f : φ(T )×A → R.

∥∥∥[f ]φ −Q∗
M̂

∥∥∥
∞

> εQ∗

π∗ ∃π : φ(T ) → ∆A.
∥∥∥V [π]φ

M − V ∗
M

∥∥∥
∞

≤ επ∗ ∀π : φ(T ) → ∆A.
∥∥∥V [π]φ

M̂
− V ∗

M̂

∥∥∥
∞

> επ∗

Table 2: Left: State abstractions of optimal targets for memory functions. Here, φ : T → ∆M ×∆Ω,
Po is the distribution over next observations P(ωt+1|φ(τt), at), and R is as defined in Definition 3.1.
Right: The definitions of ε-improving memory functions, where M̂ is the effective MDP with
components P̂ and R̂. Here, P̂o maps (φ(τt), at) to the distribution P̂ (ωt+1|ωt, at).

3.2 Optimal and improving memory functions

Now that we know how memory functions induce abstractions, we want to quantify how good
memory functions are using these abstractions. Figure 4 shows the general relationships between
abstractions and memory functions with respect to some target metric, but there are two useful
kinds of memory to draw attention to: improving memory functions that improve over having no
memory at all, and optimal memory functions improve. A memory function is ε-optimal if the
abstraction it induces has targets ε-close to optimal. A memory function is ε-improving if it is not
ε-nonimproving, where a memory function is ε-nonimproving if the abstraction it induces has targets
ε-close to the so-called effective MDP, which models a memoryless agent [Allen et al., 2024] (See
the right column of Table 2 for the formal definition). Just as the trajectory MDP plays a role in
measuring optimality, the effective MDP plays a parallel role in measuring a lack of improvement.

2In Jiang [2018], π : φ(S) → A was assumed to be deterministic, but the results extend to stochastic π as
well.

4



(mt, ωt) • (mt+1, ωt+1)

(. . . , ωt) (. . . , ωt, at, ωt+1)

ωt at ωt+1

st • st+1

π

µ

φ φ

Φ

P

Φ

Figure 3: The relationship between memory
functions and abstractions (see text). Hooks
denote inclusion into a tuple, and reward is
omitted for clarity.

memory
functions

target-
improving

target-
optimal

perfect
recall

target-
nonimproving blank

abstractions all other
abstractions

trajectory MDP
target-

preserving

finest/
identity

effective MDP
target-

preserving
coarsest

Figure 4: The relationships between types of
memory functions and types of trajectory abstrac-
tions. We elaborate on the types of abstractions
in Appendix D.

Formally, P̂ (ω′|ω, a) :=∑s,s′∈S Φ(ω′|s′)P (s′|s, a)P(s|ω) and R̂(ω, a) :=
∑

s∈S R(s, a)P(s|ω),
where P(s|ω) is policy-dependent and describes how each hidden state si ∈ S contributes to the
overall environment behavior when we see observation ω.

From defined classes of memory functions, we define classes of POMDPs, given four attributes:
stochasticity (stochastic or deterministic), quality (optimal, improving, nonimproving), target (model-
preserving, Q∗-preserving, or π∗-preserving), and number (k). Here, “improving” means 0-improving
(ε = 0), and “nonimproving” means 0-nonimproving. This is the setting in which we present our
later results.

Definition 3.2. We say that a POMDP is (stochastic/deterministic) k-memory target-
(optimal/improvable/nonimprovable) if it admits a k-state (stochastic/deterministic) target-
(optimal/improving/nonimproving) memory function.

4 Relationships between classes of memory functions

Next, let’s consider what relationships exist between these classes. We want to know, in particular,
when a POMDP admitting a memory function in one class implies it admits a memory function
in another class. We will henceforth ignore the “nonimproving” memory functions as they are not
useful, and every POMDP admits a trivial 1-state nonimproving blank memory function, and we
will also focus on the cases of 2 or an arbitrary finite number k memory states. This still, however,
leads to (2 · 2 · 3 · 2)2 = 242 possibilities! Conveniently, all of these cases can be grouped into three
families that are straightforward to consider:

1. With stochasticity, number, and quality constant, we consider if target1 ⇒ target2 in
Subsection 4.1.

2. With target and quality constant, we consider if stochasticity1, number1 ⇒
stochasticity2, number2 in Subsection 4.2.

3. With stochasticity, number, and target constant, we consider if quality1 ⇒ quality2 in
Subsection 4.3.

We conjecture that these are the only families of cases that we must consider because for any other
cases, the implication does not follow.

4.1 Target: state abstraction hierarchy

The first family of cases, target1 ⇒ target2 given that stochasticity, number, and quality are held
constant, are covered by the abstraction hierarchy. Namely, an ε-model-optimal memory function
implies the existence of a εR

1−γ + γεPRmax
2(1−γ)2 -Q∗-optimal memory function, and an ε-Q∗-optimal

memory function implies the existence of a 2εQ∗/(1− γ)-π∗-optimal memory function. Non-trivial
relationships do not appear to hold for improving memory functions.

5



These two bounds were presented earlier in the background Section 2. Though the hierarchy is
a well-known result proven by previous authors, our work requires slight extensions because we
consider soft approximate abstractions. The Q∗-preservation implies π∗-preservation proof follows
directly (see Appendix C for details), and for model-preservation implies Q∗-preservation (see
Appendix C.1) we require a modified lemma because we use a different model error definition.

4.2 Stochasticity and number

Next, let’s consider when admitting a deterministic/stochastic memory function of a certain size
implies admitting a deterministic/stochastic memory function of another size. Through a set of
proofs and counterexamples filling out tables of fixed target and quality, we prove that non-trivial
relationships between these POMDP classes do not exist, with two notable exceptions:

Theorem 4.1. With an unbounded memory capacity, deterministic memory can approach the
expected return of finite-size stochastic memory, when rewards are bounded: Let µ∗

k be a k-state
stochastic memory function. For any POMDP with bounded reward and all ε, there exists a k′-DFA
which achieves an expected return that is only ε less than µ∗

k. Furthermore, it is sufficient to choose
k′ ≥ k ln(ε(1− γ)/Rmax)/ ln(γ) where Rmax is the bound on reward and γ is the discount factor.
See Appendix G for the proof.

Example 4.1. With a finite memory capacity, there exist POMDPs where stochastic memory is
strictly more powerful than deterministic memory: We show this via counterexample. Consider the
POMDP depicted in Figure 5. The agent spawns in one of two corridors and observes a sequence
of binary observations, with all actions in the corridor moving to the right. At the junction (red),
the agent receives a positive reward if they choose the action “up”, indicating they were in the top
corridor, while they receive a positive reward in the bottom corridor if they choose “down”.

There exists no two-state DFA capable of distinguishing the strings 1000 and 0010, and thus the
agent’s memory will be identical at the junction regardless of which of the 16 two-state DFAs they
have. This problem is, however, resolvable with 3 states of memory (such as with the automata that
count the number of 0’s mod 3 since the most recent 1) or with stochastic memory, which is shown
in Figure 6. Given the policy that the agent goes up given m0 and down given m1, the agent will
receive an expected reward of 11/16 = 0.6875, which is higher than the 0.5 expected reward given
by a deterministic memory or memoryless policy.

1 0 0 0
+1

-1

0 0 1 0
-1

+1

Figure 5: Two corridors, the sequence of ob-
servations of which cannot be recalled by any
deterministic 2-state DFA.

m0 m1

0.5

0

0.5

1

1

0

1

0

Figure 6: m0 is the initial state, the solid
line gives transitions upon observations of
0, and the dashed line gives transitions upon
observations of 1.

These two results highlight important entries in the following tables, the first of which, Table 3, shows
which implications hold for π∗. We give a reference after each implication result to a counterexample
or proof in the appendix, and relationships that hold trivially by set inclusion are marked with [SI].

6



Expected π∗-optimal Expected π∗-improving
if ∃ ↓ then ∃ → 2 det k′ det 2 sto k′ sto 2 det k′ det 2 sto k′ sto

2 det ✓ [SI] ✓ [SI] ✓ [SI] ✓ [SI] ✓ [SI] ✓ [SI] ✓ [SI] ✓ [SI]
k det × H.1 ✓ [SI] × H.1 ✓ [SI] × H.1 ✓ [SI] × H.1 ✓ [SI]
2 sto × E.1 * ✓ [SI] ✓ [SI] × E.1 * ✓ [SI] ✓ [SI]
k sto × H.1 * × H.1 ✓ [SI] × H.1 * × H.1 ✓ [SI]

Table 3: POMDP class implications for the π∗ target. Here, * denotes that the result depends on
whether rewards are bounded, i.e., an Rmax exists. If rewards are bounded, then the result holds by
Theorem 4.1, while if they are unbounded, we have counterexample E.1.

Example 4.1 corresponds to the third row, first column entry, while Theorem 4.1 corresponds to
the third row, second column entries. However, to minimize the number of counterexamples we
need to cite in this table and present in the appendix, we leave Example 4.1 for intuition and instead
reference other counterexamples that refute the same claims in the tables. The relationships given in
the table above can be visualized in Figure 7, which continues to hold for later tables, albeit without
the converse marked by ∗.

MkD M2D

QkD Q2D

πkD π2D

πkS π2S

QkS Q2S

MkS M2S

∗

Figure 7: The general relationships between our defined POMDP classes. Here, “M” denotes model,
“Q”, Q∗, and π, π∗; 2 denotes 2-state and k denotes k-state (with each entry potentially a different k),
and D denotes deterministic, while S denotes stochastic. The asterisk and purple arrow mark the
result from Example 4.1, when a converse holds.

Here, we also note that Table 3 is for the expected case, meaning it is defined with an expectation
over initial trajectories τ rather than an ∞-norm, i.e., max over all initial trajectories. With this
expected case, π∗-optimality is equivalent to expected return preservation, and, indeed, this is the
way we present the proofs/counterexamples. Similarly, expected Q∗-optimality is equivalent to
the preservation of the expected value error of π∗. However, expected model-optimality is less
significant than ∞-norm model-optimality, which is equivalent to the memory-augmented POMDP
being Markov in transitions and rewards. Hence, it is apparent that both options are useful in some
contexts; this is a choice we have to make in our results. There is a relationship between the two
norms; any target ∞-norm preservation implies expected case preservation. Because the results
involving the abstraction hierarchy are in terms of the ∞-norm, we use the ∞-norm to present our
later tables for Q∗ and π∗. See Appendix F for more details on the ∞-norm and expected options.

It turns out that Table 4 for Q∗ and Table 5 for model are simple; their entries can be proven with just
two distinct counterexamples in addition to set inclusion. We include them for completeness below.

7



Q∗-optimal Q∗-improving
if ∃ ↓ then ∃ → 2 det k′ det 2 sto k′ sto 2 det k′ det 2 sto k′ sto

2 det ✓ [SI] ✓ [SI] ✓ [SI] ✓ [SI] ✓ [SI] ✓ [SI] ✓ [SI] ✓ [SI]
k det × E.3 ✓ [SI] × E.3 ✓ [SI] × E.3 ✓ [SI] × E.3 ✓ [SI]
2 sto × E.5 × E.5 ✓ [SI] ✓ [SI] × E.5 × E.5 ✓ [SI] ✓ [SI]
k sto × E.3 × E.5 × E.3 ✓ [SI] × E.3 × E.5 × E.3 ✓ [SI]

Table 4: POMDP class implications for the Q∗ target

model-optimal model-improving
if ∃ ↓ then ∃ → 2 det k′ det 2 sto k′ sto 2 det k′ det 2 sto k′ sto

2 det ✓ [SI] ✓ [SI] ✓ [SI] ✓ [SI] ✓ [SI] ✓ [SI] ✓ [SI] ✓ [SI]
k det × E.3 ✓ [SI] × E.3 ✓ [SI] × E.3 ✓ [SI] × E.3 ✓ [SI]
2 sto × E.5 × E.5 ✓ [SI] ✓ [SI] × E.5 × E.5 ✓ [SI] ✓ [SI]
k sto × E.3 × E.5 × E.3 ✓ [SI] × E.3 × E.5 × E.3 ✓ [SI]

Table 5: POMDP class implications for the model target

4.3 Quality: Improving/optimal

Lastly, we must consider when, holding stochasticity, number, and target constant, does improving
imply optimal? The answer is no, and to show this, we can modify Figure 5 to admit a memory
function that is improving but suboptimal for each target. Consider a modified Figure 5 in which
there are four possible corridors the agent spawns in, with a fifth observation appended independently
to the end of each corridor, either a 0 or 1. The agent has a choice of two tasks: recalling the most
recent observation or recalling the entire sequence of observations. The harder task yields higher
rewards. A 2-state DFA can recall the most recent observation, and therefore receive a small reward.
However, just as before, the agent is unable to recall the sequence of the 4 initial observations. A
larger DFA can, however, recall the full sequence and receive the large reward. This example also
works for Q∗ following similar reasoning. For model, it works because recalling the first observation
is sufficient for predicting the full observation sequence, and recalling the full observation sequence
is required for predicting reward.

5 Related Work

We can use the POMDP classes defined in this paper to generalize previously considered classes
of restricted POMDPs, or otherwise to situate them within a natural hierarchical framework. The
POMDP framework was first developed for control theory in Åström [1965] and later applied to AI
problems in works such as Kaelbling et al. [1998]. Schmidhuber [1990], Lin and Mitchell [1992],
and Meeden et al. [1993] developed the use of history features, and Lin and Mitchell [1992] and Ring
[1994] developed variable-length history windows. Some approaches to memory were previously
surveyed in Kaelbling et al. [1996]. McCallum [1996] implies (without explicitly mentioning
“abstraction”) that memory can be viewed as an abstraction over histories. However, he did not have
access to the state abstraction hierarchy that came later due to Li et al. [2006].

Model-abstractions: The regular decision processes (RDPs) defined by Brafman and De Giacomo
[2024] are essentially the class of POMDPs that admit finite transition-model and reward-model
optimal memory functions. This follows from the FSM specification of RDPs. By formalizing this in
the framework of approximate abstractions, however, our work can further accommodate approximate
ε-optimal classes in addition to exact target-preserving classes. This fact generally holds for the other
classes of POMDPs mentioned below; our framework enables approximate variants.

As Brafman and De Giacomo [2024] point out, k-order Markov POMDPs [Ching and Ng, 2006], in
which the future observations are independent of the past history given the last k steps of observations,
are a special case where the memory functions act only on the most recent k observations. If we
decouple transition-model-optimality and reward-model-optimality, then we get the generalization

8



of k-order Markovianity pursued by Ni et al. [2023]. Those authors allowing the k parameter to
vary between rewards and transitions via the “reward memory length” (k such that E[rt|h1:t, at] =
E[rt|ht−k+1:t, at]) and “transition memory length”. Thus, we can recover the class of POMDPs
with a reward (resp. transition) memory length of k as the class of POMDPs that admit reward-
model-optimal (resp. transition-model-optimal) memory functions that act only on the most recent k
observations.

It is often useful to compress the history in addition to memorizing it, and it can be cheaper to
maintain a long-term small FSM of memory than a short-term high-fidelity memory. Metrics
like k-order Markov and memory length only care about memorizing past sequences, while our
approach accommodates either by restricting the class of memory functions we consider. The
memorization-based approach is somewhat specialized for context-based architectures such as
transformers. Additionally, we mention that Efroni et al. [2022] defines the class of k-step decodable
POMDPs, which are stronger than k-order Markov POMDPs, in which the last k observations can
predict not only a function (the observation function) of the next state, but the state itself.

Policy and value abstractions: Just as k-order Markov POMDPs can be described as a type of
model-optimal memory functions, the classic group of POMDPs defined by finitely-transient policies
of size k [Sondik, 1978] are equivalent to POMDPs that admit a π∗-optimal memory function with
k states. Furthermore, just as Ni et al. [2023]’s “reward” and “transition” memory lengths slightly
generalized k-Markovianity, Ni et al. [2023] also define a “policy memory length” that generalizes
finite transience in the same way. They correspond to π∗-optimal memory functions of a certain size
in our framework. Ni et al. [2023] also define “value memory length” that corresponds to Q∗-optimal
memory functions in our framework. They also discuss a credit assignment length that does not
appear to easily fit within our system.

Belief space methods: We could define classes of POMDPs based on the size of the reachable belief
states, dependent on a specific policy, such as the optimal policy or a set of policies. Zhang and
Zhang [2001] defines “informative POMDPs”, where each new observation yields information that
helps partition the belief space. Roy et al. [2005] proposes a method of compressing the belief space
of POMDPs with exponential family principal component analysis. Lee et al. [2007] proposes a
different method that utilizes the covering number instead of PCA. Doing so, the authors achieve
guarantees on the difficulty of finding approximately optimal solutions; the time required to find such
a solution is polynomial in the covering number. It may be possible to connect our abstraction-based
approach to belief space methods, but that is outside the scope of this paper.

Learnability: Another class of POMDPs is defined with restrictions to the observation or transition
space such that efficient learnability is guaranteed. Jin et al. [2020] defines “undercomplete” POMDPs
where there are more observations than latent states. Azizzadenesheli et al. [2016] and Guo et al.
[2016] both place restrictions on the allowed observation functions (full column rank), transition
function (full rank), with Azizzadenesheli et al. [2016] having an additional assumption of ergodicity
and Guo et al. [2016] of full reward column rank. Given these assumptions, they find efficient learning
techniques. These classes of POMDPs are different from the ones we define, which are focused on
expressability rather than learnability, and we place no assumptions on the observation or transition
functions. In the future, we hope to tie the two notions together.

Problem-specific: There are also specialized classes of POMDPs that are efficiently solvable by
methods such as SLAM and Kalman filters, where constraints are placed on the transition dynamics
and/or observation function, such as assuming Gaussian noise in it. Overall, while many of the
traditional classes of POMDPs fit into our framework, this seems to be the first time they fit into a
known hierarchy, and we are the first authors to consider relationships between the classes.

6 Future Work

We are excited about how the theory in this paper can apply to further settings, such as considering
exploration in addition to exploitation. While the memory functions in this paper concern the latter,
some environments, such as mazes, may require a large amount of memory to explore, even though
the resulting policy does not require much memory to express. Similarly, we hope to later relate the
complexity classes in this paper to useful metrics such as the speed of learning. Lastly, we note two
ways that results in this paper could be sharpened: by considering variable ε in our tables instead of
just ε = 0, and by considering quantitative and asymptotic estimates on how parameters such as the

9



number of states k required to achieve a certain performance level vary, similar to the estimate in
Lemma 4.1.

7 Conclusion

We prove that memory functions induce state abstractions over the trajectory MDP, and therefore
we can judge them based on typical state abstraction targets of π∗-preservation, Q∗-preservation,
and model-preservation. We define classes of POMDPs based on whether, for any of these targets,
a deterministic or stochastic memory function of a certain size exists that is optimal or improves
the target. We prove which inclusions hold between these POMDP classes, and we show that
these classes both systematize previously considered types of POMDPs (regular decision processes,
k-order Markov models, memory lengths, finitely transient POMDPs) and generalize them with
ε-approximate variants.

References
D. Abel, D.E. Hershkowitz, and M.L. Littman. Near optimal behavior via approximate state ab-

straction. In Proceedings of The 33rd International Conference on Machine Learning, pages
2915–2923, 2016.

Cameron Allen, Aaron T Kirtland, Ruo Yu Tao, Sam Lobel, Daniel Scott, Nicholas Petrocelli, Omer
Gottesman, Ronald Parr, Michael Littman, and George Konidaris. Mitigating partial observability
in decision processes via the lambda discrepancy. In The Thirty-eighth Annual Conference on
Neural Information Processing Systems, 2024.

Karl Johan Åström. Optimal control of markov processes with incomplete state information i. Journal
of mathematical analysis and applications, 10:174–205, 1965.

Kamyar Azizzadenesheli, Alessandro Lazaric, and Animashree Anandkumar. Reinforcement learning
of pomdps using spectral methods. In Conference on Learning Theory, pages 193–256. PMLR,
2016.

Bram Bakker. Reinforcement learning with long short-term memory. Advances in Neural Information
Processing Systems, 14, 2001.

Ronen I Brafman and Giuseppe De Giacomo. Regular decision processes. Artificial Intelligence,
331:104113, 2024.

Wai-Ki Ching and Michael K Ng. Markov chains. Models, algorithms and applications, 650:111–139,
2006.

Yonathan Efroni, Chi Jin, Akshay Krishnamurthy, and Sobhan Miryoosefi. Provable reinforcement
learning with a short-term memory. In International Conference on Machine Learning, pages
5832–5850. PMLR, 2022.

Zhaohan Daniel Guo, Shayan Doroudi, and Emma Brunskill. A pac rl algorithm for episodic pomdps.
In Artificial Intelligence and Statistics, pages 510–518. PMLR, 2016.

Joey Hong, Anca Dragan, and Sergey Levine. Offline rl with observation histories: Analyzing and
improving sample complexity, 2023. URL https://arxiv.org/abs/2310.20663.

Nan Jiang. Notes on state abstractions, 2018. URL http://nanjiang.cs.illinois.edu/files/
cs598/note4.pdf.

Chi Jin, Sham Kakade, Akshay Krishnamurthy, and Qinghua Liu. Sample-efficient reinforcement
learning of undercomplete pomdps. Advances in Neural Information Processing Systems, 33:
18530–18539, 2020.

Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. Reinforcement learning: A survey.
Journal of artificial intelligence research, 4:237–285, 1996.

10

https://arxiv.org/abs/2310.20663
http://nanjiang.cs.illinois.edu/files/cs598/note4.pdf
http://nanjiang.cs.illinois.edu/files/cs598/note4.pdf


L.P. Kaelbling, M.L. Littman, and A.R. Cassandra. Planning and acting in partially observable
stochastic domains. Artificial Intelligence, 101(1-2):99–134, 1998.

Wee Lee, Nan Rong, and David Hsu. What makes some pomdp problems easy to approximate?
Advances in neural information processing systems, 20, 2007.

L. Li, T.J. Walsh, and M.L. Littman. Towards a unified theory of state abstraction for MDPs. In
Proceedings of the Ninth International Symposium on Artificial Intelligence and Mathematics,
2006.

Long-Ji Lin and Tom M Mitchell. Memory approaches to reinforcement learning in non-Markovian
domains. Citeseer, 1992.

Andrew Kachites McCallum. Reinforcement learning with selective perception and hidden state.
University of Rochester, 1996.

Lisa Meeden, Gary McGraw, and Douglas Blank. Emergent control and planning in an autonomous
vehicle. In Proceedings of the Annual Meeting of the Cognitive Science Society, volume 15, 1993.

Tianwei Ni, Michel Ma, Benjamin Eysenbach, and Pierre-Luc Bacon. When do transformers shine
in rl? decoupling memory from credit assignment. Advances in Neural Information Processing
Systems, 36:50429–50452, 2023.

Mark Bishop Ring. Continual learning in reinforcement environments. The University of Texas at
Austin, 1994.

Nicholas Roy, Geoffrey Gordon, and Sebastian Thrun. Finding approximate pomdp solutions through
belief compression. Journal of artificial intelligence research, 23:1–40, 2005.

Jürgen Schmidhuber. Reinforcement learning in markovian and non-markovian environments.
Advances in neural information processing systems, 3, 1990.

Satinder Singh, Tommi Jaakkola, and Michael Jordan. Reinforcement learning with soft state
aggregation. Advances in neural information processing systems, 7, 1994.

Satinder P Singh and Richard C Yee. An upper bound on the loss from approximate optimal-value
functions. Machine Learning, 16:227–233, 1994.

Edward J Sondik. The optimal control of partially observable markov processes over the infinite
horizon: Discounted costs. Operations research, 26(2):282–304, 1978.

Jonathan Sorg and Satinder Singh. Transfer via soft homomorphisms. In Proceedings of The
8th International Conference on Autonomous Agents and Multiagent Systems-Volume 2, pages
741–748, 2009.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. A Bradford
Book, Cambridge, MA, USA, 2018.

Stephan Timmer and Martin Riedmiller. Reinforcement learning with history lists. PhD thesis,
University of Osnabrück, Germany, 2009.

Weihong Zhang and Nevin L Zhang. Solving informative partially observable markov decision
processes. In Proceedings of the 6th European Conference on Planning (ECP), 2001.

11



A Limitations

As discussed in Subsection 4.2, we consider only the expected case of π∗-optimality and the ∞-norm
case of Q∗-optimality and model-optimality. We anticipate other asymptotic or numerical results
may hold about approximations, but we do not show those here. Additionally, our results are for the
ε = 0 case of strict optimality or improvement, while potentially more sophisticated results could
follow from considering variable ε.

B Broader Impacts

The theory presented in this paper could potentially be applied to any areas of sequential decision
making or reinforcement learning, such as robotics. However, it is foundational research not tied
to particular applications or deployments, and thus has no societal impacts beyond what any work
towards reinforcement learning theory entails. Impact control is the same as for any of these works.

C Abstraction Hierarchy

In order to accommodate soft abstractions, we alter the definition of lifting from

[f ]φ(s) := f(φ(s))

to
[f ]φ(s) := E

x∼φ(s)
f(x)

With this change, the definitions of approximate π∗-preservation and Q∗-preservation remain the
same as in Jiang [2018], where we take the space of trajectories as the state space.

However, the definition of model requires a slight modification from Jiang’s definition. Jiang defines
a model-preserving abstraction to satisfy an approximate bisimulation condition: for all s, s′ ∈ S
with φ(s) = φ(s′) and for all a ∈ A,

|R(s, a)−R(s′, a)| ≤ εR

∥ΦP (s, a)− ΦP (s′, a)∥1 ≤ εP

However, this definition does not necessarily generalize well to the case that φ(s) is a distribution. We
could instead require closeness between φ(s) and φ(s′), but it seems easier to instead take a slightly
different definition, namely a result that Jiang proves as a corollary of the approximate bisimulation
condition.

Jiang proves in his Lemma 3 that when the approximate bisimulation condition holds, there exists an
MDP Mφ = (φ(S), A, Pφ, Rφ, γ) such that for all s ∈ S and a ∈ A,

|Rφ(φ(s), a)−R(s, a)| ≤ εR

∥Pφ(x, a)− ΦP (s, a)∥1 ≤ εP

The actual definitions of Rφ and Pφ do not matter for latter proofs in the hierarchy (for model-
preservation to imply Q∗-preservation); only their existence. Importantly, this definition works
naturally for soft abstractions, which will allow us to work with stochastic memory functions. This is
therefore the basis of how we define model-preservation in our paper.

Here’s how we derive our definitions: The conclusion of Lemma 3 is precisely that if the bisimulation
condition is met, then there exists a Pφ : X ×A → ∆X , Rφ : X ×A → R such that for all s ∈ S
and a ∈ A,

1. ∥Pφ(x, a)− ΦP (s, a)∥1 ≤ εP

2. |Rφ(φ(s), a)−R(s, a)| ≤ εR

Renaming these components, we get

1. ∃fP : X ×A → ∆X.∥[fP ]φ − Φ ◦ P∥ < εP

2. ∃fR : X ×A → R.∥[fR]φ −R∥∞ < εR

12



and additional substitutions of φ(S) for X and Po for Φ ◦ P yields

1. ∃fP : φ(S)×A → ∆φ(S).∥[fP ]φ − Po∥ < εP

2. ∃fR : φ(S)×A → R.∥[fR]φ −R∥∞ < εR

This is very close to our definition of model-preservation, which we recall below:

1. ∃fP : φ(T )×A → ∆Ω.∥[fP ]φ − Po∥ < εP

2. ∃fR : φ(T )×A → R.∥[fR]φ −R∥∞ < εR

The differences are that we need to substitute T , the space of trajectories, in for S, and we need to
replace Ω with φ(T ). Additionally, the output of fP would be φ(T ) = ∆M ×∆Ω, not ∆Ω, with
this substitution. We change the output space of fP because there is no need to predict next memory
states; predicting only next observations should be considered the definition.

In the following subsections, we prove that the abstraction hierarchy continues to hold.

C.1 model-preservation implies Q∗-preservation

Consider an MDP with states X = M × Ω, actions A, transitions (m′, ω′) = x′ ∼ PM (x, a) =
(µ(x, a), fP (x, a)) defined by the standard memory update but with averaging over observation
transitions following fP , and rewards given by fR. Note that the transitions are stochastic and their
probabilities can be written as PM (x′|x, a).
Because this is an MDP, we can define a Q-value function f∗ : φ(T )× A → R for it that satisfies
the optimal Bellman equation:

f∗(x, a) = fR(x, a) + γmax
a′∈A

E
x′∼PM (x,a)

f∗(x′, a′)

Given that this holds for all x, we can take an expectation of both sides over x ∼ φ(τ) to get

E
x∼φ(τ)

f∗(x, a) = E
x∼φ(τ)

fR(x, a) + γmax
a′∈A

E
x∼φ(τ)

E
x′∼PM (x,a)

f∗(x′, a′)

We now rewrite the expectation over f∗(x′, a′) in terms of τ ′ for the given τ and a′. For this we will
define a new function PT : T ×A → ∆T , such that PT (τ, a) = τ ⊕ (a,Ex∼φ(τ) fP (x, a)).

E
x∼φ(τ)

E
x′∼PM (x,a)

f∗(x′, a′)

= E
x∼φ(τ)

∑

x′

PM (x′|x, a)f∗(x′, a′)

= E
x∼φ(τ)

∑

ω′

∑

m′

PM ((m′, ω′)|x, a)f∗((m′, ω′), a′)

= E
x∼φ(τ)

∑

ω′

∑

m′

fP (ω
′|x, a)µ(m′|x, a)f∗((m′, ω′), a′)

= E
x∼φ(τ)

∑

ω′

fP (ω
′|x, a)

∑

m′

µ(m′|x, a)f∗((m′, ω′), a′)

Note that for a given τ and a′ the sum over ω′ is equivalent to a sum over τ ′ with ω′ being the last
observation. Specifically, we can rewrite

∑
ω′ fP (ω

′|x, a) as an expectation over τ ′ as follows:

= E
x∼φ(τ)

∑

τ ′

fP (τ
′
last ω|x, a)

∑

m′

µ(m′|x, a)f∗((m′, τ ′last ω), a
′)

13



Now we notice that for a given τ ′ and x, (m′, τ ′last ω) is simply φ(τ ′) and µ(m′|x, a) is equivalent to
P[m′|φ(τ ′)] by the definition of φ.

= E
x∼φ(τ)

∑

τ ′

fP (τ
′
last ω|x, a)

∑

m′

φ(m′|τ ′)f∗((m′, τ ′last ω), a
′)

=
∑

τ ′

E
x∼φ(τ)

fP (τ
′
last ω|x, a)

∑

m′

φ(m′|τ ′)f∗((m′, τ ′last ω), a
′)

= E
τ ′∼PT (τ,a)

∑

m′

φ(m′|τ ′)f∗((m′, τ ′last ω), a
′)

= E
τ ′∼PT (τ,a)

E
(m′,ω′)∼φ(τ ′)

f∗((m′, ω′), a′)

= E
τ ′∼PT (τ,a)

E
x′∼φ(τ ′)

f∗(x′, a′)

Let f∗(τ, a) = Ex∼φ(τ) f
∗(x, a). Assuming that rewards are bounded, i.e. there exists an Rmax such

that |R| < Rmax, we can compute ∥f∗(τ, a)−Q∗(τ, a)∥ as:

∥f∗(τ, a)−Q∗(τ, a)∥

=

∥∥∥∥Ex∼φ(τ)fR(x, a)−R(τ, a) + γmax
a′∈A

E
τ ′∼PT (τ,a)

[f∗(τ ′, a)]−max
a′∈A

E
τ ′∼P (τ,a)

[Q∗(τ ′, a′)]

∥∥∥∥

≤
∥∥∥∥ E
x∼φ(τ)

fR(x, a)−R(τ, a)

∥∥∥∥+ γ

∥∥∥∥max
a′∈A

E
τ ′∼PT (τ,a)

[f∗(τ ′, a)]−max
a′∈A

E
τ ′∼P (τ,a)

[Q∗(τ ′, a′)]

∥∥∥∥

≤ εR + γmax
a′∈A

∥∥∥∥ E
τ ′∼PT (τ,a)

[f∗(τ ′, a)]− E
τ ′∼P (τ,a)

[Q∗(τ ′, a′)]

∥∥∥∥

≤ εR + γmax
a′∈A

∥∥∥∥∥
∑

τ ′∈T

[PT (τ
′|τ, a)f∗(τ ′, a)]−

∑

τ ′∈T

[P (τ ′|τ, a)Q∗(τ ′, a′)]

∥∥∥∥∥

= εR + γmax
a′∈A

∥∥∥∥∥
∑

τ ′∈T

PT (τ
′|τ, a)f∗(τ ′, a)− P (τ ′|τ, a)Q∗(τ ′, a′)

∥∥∥∥∥

= εR + γmax
a′∈A

∥∥∥∥∥
∑

τ ′∈T

PT (τ
′|τ, a)f∗(τ ′, a)− P (τ ′|τ, a)f∗(τ ′, a) + P (τ ′|τ, a)f∗(τ ′, a)− P (τ ′|τ, a)Q∗(τ ′, a′)

∥∥∥∥∥

= εR + γmax
a′∈A

∥∥∥∥∥
∑

τ ′∈T

(PT (τ
′|τ, a)− P (τ ′|τ, a)) f∗(τ ′, a) + P (τ ′|τ, a) (f∗(τ ′, a)−Q∗(τ ′, a′))

∥∥∥∥∥

< εR + γmax
a′∈A

∥∥∥∥∥
∑

τ ′∈T

(PT (τ
′|τ, a)− P (τ ′|τ, a)) f∗(τ ′, a)

∥∥∥∥∥+max
a′∈A

∥∥∥∥∥
∑

τ ′∈T

P (τ ′|τ, a) (f∗(τ ′, a)−Q∗(τ ′, a′))

∥∥∥∥∥

which follows from the triangle inequality. The next inequality follows from ∥max ·∥ ≤ max ∥·∥.

≤ εR + γmax
a′∈A

∥∥∥∥∥
∑

τ ′∈T

(PT (τ
′|τ, a)− P (τ ′|τ, a)) f∗(τ ′, a)

∥∥∥∥∥+ max
a′∈A,τ ′∈T

∥f∗(τ ′, a)−Q∗(τ ′, a′)∥

≤ εR + γmax
a′∈A

((∑

τ ′∈T

∥PT (τ
′|τ, a)− P (τ ′|τ, a)∥

)
max
τ ′∈T

∥f∗(τ ′, a)∥
)

+ max
a′∈A,τ ′∈T

∥f∗(τ ′, a)−Q∗(τ ′, a′)∥

From the definition of model preserving we have that εP >
∑

τ ′∈T Ex∼φ(τ ′) fP (x, a)−P (τ ′, a)o =∑
τ ′∈T PT (τ

′|τ, a) − P (τ ′|τ, a). We also have that the function f∗ is bounded by Rmax/(1 − γ)
which is obtained by considering the maximum reward Rmax in the Bellman equation for f∗.

14



≤ εR + γmax
a′∈A

εP
Rmax

(1− γ)
+ max

a′∈A,τ ′∈T
∥f∗(τ ′, a)−Q∗(τ ′, a′)∥

≤ εR +
γεPRmax

(1− γ)
+ max

a′∈A,τ ′∈T
∥f∗(τ ′, a)−Q∗(τ ′, a′)∥

Letting E(τ, a) = ∥f∗(φ(τ, a)−Q∗(τ, a)∥ we can rewrite the inequality as,

E(τ, a) ≤ εR + γεPRmax + γ max
a′∈A,τ ′∈T

E(τ ′, a′)

max
a∈A,τ∈T

E(τ, a) ≤ max
a∈A,τ∈T

(
εR +

γεPRmax

(1− γ)
+ γ max

a′∈A,τ ′∈T
E(τ ′, a′)

)

max
a∈A,τ∈T

E(τ, a) ≤ εR +
γεPRmax

(1− γ)
+ γ max

a∈A,τ∈T
max

a′∈A,τ ′∈T
E(τ ′, a′)

max
a∈A,τ∈T

E(τ, a) ≤ εR +
γεPRmax

(1− γ)
+ γ max

a∈A,τ∈T
E(τ, a)

max
a∈A,τ∈T

E(τ, a) ≤ εR
(1− γ)

+
γεPRmax

(1− γ)2

so for all τ ∈ T, a ∈ A
∥∥∥∥ E
x∼φ(τ)

f∗(φ(x, a)−Q∗(τ, a)

∥∥∥∥ ≤ εR
(1− γ)

+
γεPRmax

(1− γ)2

So the Q∗ error is bounded by a function of the two sources of model error.

C.2 Q∗-preservation implies π∗-preservation

To prove the other implication in the hierarchy, that Q∗-preservation implies π∗-preservation, we can
utilize the same approach is in Jiang [2018]. Namely, the lemma

Lemma C.1.

∥V ∗ − V πf ∥∞ ≤ 2∥f −Q∗∥∞
1− γ

continues to hold in our generalized setting because the lifted function [π]φ has the same signature
S → ∆A in both of the exact abstraction and soft abstraction cases.

Proof. See Singh and Yee [1994].

D Abstractions to Memory Functions

The finest/identity abstraction maps each trajectory to its own memory state. For standard environ-
ments with unbounded trajectories, this yields an infinite-state automata memory function capable
of perfect recall. The opposite of this would be an abstraction that maps all trajectories to a single
memory state. This yields a trivial memory function with a single state, which is effectively always
blank.

Two intermediate classes of memory functions that are useful to define are those that are ε-close to
target-preserving abstractions over either the trajectory MDP or the effective MDP. The trajectory
MDP models having perfect information, so being ε-close to target-preserving over it implies almost
having enough information to recreate the target. The effective MDP models the opposite situation in
which no information is available, so ε-close target preservation means having almost no advantage
over a blank memory.

Anything that is not ε-close to target-preserving over the effective MDP is called “improving”.

15



Memory Test (n)
observe:
start

· · ·
︸ ︷︷ ︸

(virtual)n

observe:

left
0.9−−→
0.1−−→

observe:

right
0.9−−→
0.1−−→

observe:

sample
a1 a2 a3 · · · an

↓ action a3

Reward
Memory Test

History
· · ·

Compute Likelihood of
Agent Not Sampling

From Correct Distribution
Across Memory Tests

Is the value greater
than the threshold?

Positive Reward

No Reward

Negative Reward

No

Not enough confidence

Yes

Stochastic Memory Detection POMDP

n = 1

n = 1 n = 2

n = 1 n = 2 n = 3

...
...

...
· · · . . .

Figure 8: Example E.1 POMDP.

E Counterexamples

Example E.1. The following counterexample is for the following results:

• The existence of 2-stochastic expected return optimal memory doesn’t imply the existence
of k-deterministic expected return optimal memory if rewards are unbounded.

• The existence of 2-stochastic expected return improving memory doesn’t imply the existence
of k-deterministic expected return improving memory if rewards are unbounded.

• The existence of 2-stochastic or k-stochastic expected return optimal memory doesn’t imply
the existence of k-deterministic expected return optimal memory if rewards are unbounded.

• The existence of 2-stochastic or k-stochastic expected return improving memory doesn’t
imply the existence of k-deterministic expected return improving memory if rewards are
unbounded.

To show both the optimal conditions and the improvable conditions it is sufficient to show that for a
given POMDP where there exists a k-stochastic memory function which is expected return optimal
there doesn’t necessarily exist a k-deterministic memory function which is improvable. This is
derived from the fact that an optimal memory function is improving, along with its contrapositive: if
there doesn’t exist an improving memory function there cannot exist an optimal one. For this purpose,
we construct the following counter example and depict its structure in Figure 8.

Consider an environment where the agent’s task is to simulate trajectories in a stochastic virtual
environment and sample from the state distribution after some number of steps. The agent’s actual
environment is constructed adversarially such that the agent is rewarded if it produces different
samples for the same simulated trajectory over multiple trials. The environment is composed of a
detection mechanism and a rewarding mechanism. The detection mechanism detects whether an
agent has deterministic or stochastic memory irrespective of the stochasticity of the policy. The
rewarding mechanism produces different reward based on if the agent memory is deterministic or
stochastic and induces non-improving reward for deterministic memory. Finally, there is also an
opt-out action that can be taken at the first time step giving the agent 0 reward.

The detection mechanism is composed of a series of tests where the agent is asked to simulate a
particular stochastic environment. The virtual environment is a board with n = 10 spaces in a line
and a token in the first space. The value of n corresponds to the number of memory states of the
stochastic memory function and we choose it to be 10 for the purposes of this example. For an agent
with 2 stochastic memory states we would similarly have n = 2. Each test starts with ωreset which
indicates that the token should be virtually placed on the first space. Then, an arbitrary long sequence
of observations from the set {ωleft, ωright} is provided to the agent. When receiving ωleft or ωright
the agent is expected to simulate the token moving left or right respectively with probability 0.9 or

16



otherwise staying in place (the choice of probability here is arbitrary as long as it isn’t uniform).
Finally, the agent gets the observation ωsample for which the agent is expected to take an action from
a1, . . . , a10 corresponding to where the simulated token ended up. For all other observations, the
agent is expected to provide the action a0.

After a single test the likelihood that the sampled action was in fact from the expected virtual
distribution is computed and by repeating the test the statistical confidence can be increased. To run
infinitely many tests infinitely many times a list of current tests is constructed and run sequentially.
Upon completion a new longer test is added and the full list of tests is repeated. This ensures that in
the limit as a finite time step t goes to infinity, infinitely many tests, are run infinitely many times,
and the length of the tests also approaches infinity.

A single test cannot be executed perfectly by an agent with deterministic memory while it is trivially
handled by a stochastic memory agent with 10 memory states. For any choice of finite deterministic
memory size there will eventually be a test that requires remembering more possible distributions
than there are memory states. In this case, the best that the agent would be able to do is sample from
a distribution that is ε close to the true distribution. As that particular test is repeated infinitely many
times, the discrepancy between the agents sampling distribution and the true distribution will always
become statistically significant and detectable.

For the rewarding mechanism of the environment, we simply give the agent reward depending on if
it is believed to have stochastic or deterministic memory. A reward that is exponential in the time
step, |R(t)| = O(1/γt), would be sufficient to overshadow the discount factor γ. For this particular
counter example, we will provide a positive reward for agents believed to have stochastic memory
and a negative reward for agents believed to have deterministic memory (according to the detection
mechanism). Positive and negative rewards are equal in magnitude. If the current likelihood estimate
doesn’t have sufficient confidence a reward of 0 is given. In the limit, the probability that the detecting
mechanism is wrong about the nature of the agents memory goes to zero and so in the limit, all agents
with receive positive/negative reward if they have stochastic/deterministic memory respectively.

The opt-out action is available for the agent at the first time step and if taken gives the agent 0 reward
and ends the episode. This reward is arbitrary as long as it is better than the reward achieved by an
agent with deterministic memory. This ensures that the best option for a deterministic agent is to opt
out and so achieve the same performance as no memory.

We now combine the detecting mechanism with the rewarding mechanism. Importantly, the detecting
piece is never certain that a given agent has deterministic or stochastic stochastic memory for any
finite time step t. This means we cannot switch to the rewarding piece indefinitely. Instead, after
each test in the detecting piece we allow the rewarding piece to take over for a single time step to
provide reward based on the current likelihood of the agent having deterministic memory. Because of
randomness an agent with stochastic memory may be believed to have deterministic memory but in
the limit this will resolve and the expected return will be positive. A deterministic memory agent
with finitely many states will be detected after finitely many time steps and so will have a negative
expected return even if it receives zero or positive reward for some finite number of time steps initially.
Because of this, any non-stochastic agent or agent with insufficient memory will take the opt-out
action when maximizing expected return and so achieve the same reward as a no memory function
behavior.

Note that for this counter example we require non-finite trajectories and we only detect deterministic
memory in the limit as the time step goes to infinity. If trajectories are finite, then proof 4.1 gives a
deterministic memory that is better or equal to any given stochastic memory.

Example E.2. The following counter example is for the following results:

• The existence of k-stochastic expected Q∗ optimal memory doesn’t imply the existence of
2-deterministic Q∗ optimal memory

• The existence of 2-stochastic expected Q∗ optimal memory doesn’t imply the existence of
2-deterministic Q∗ optimal memory

• The existence of k-stochastic expected Q∗ improving memory doesn’t imply the existence
of 2-deterministic Q∗ improving memory

17



0 + 0 0 0 +10

0 - 0 0 0 -10

0 0 0 + 0 -10

0 0 0 - 0 +10

Figure 9: Four corridors.

• The existence of 2-stochastic expected Q∗ improving memory doesn’t imply the existence
of 2-deterministic Q∗ improving memory

This environment is depicted in Figure 9.

Consider an environment in which the agent is in one of four corridors with a single action and
receives observations for 5 time steps before receiving a final reward. All observations are blank (0)
with the except of one, on either the 2nd or 4th time step. That observation is either a + or a −. If the
observations seen at time step 2 are + or −, the final reward is 10 or −10 respectively. If the unique
observation is instead seen on the 4th time step, then the final rewards are flipped. Because the agent
only has a single action at each time step, there is only one possible policy.

In this environment, an agent with k memory states can track both the time step and the specific
observation, + or −, to know the exact reward that will be received at the final time step.

For an agent with 2 deterministic memory states, m1 and m2, there are at most 26 possible memory
functions. We can think of these in terms of the possible memory transitions for the three observations,
0, +, and −, independently.

First consider the possible memory transitions for the blank observation 0. Two options are collapsing
the memory to either m1 or m2 in which case there is no information at the final timestep and the
best possible error is 10. So for the 0 observation we can either transpose the memory states or keep
them the same (identity). For the + observation we similarly cannot collapse the memory to either
m1 or m2 or else reach the final state with a fixed memory state in corridors 2 and 4 and the best
possible error is 10. The same logic follows for the − memory transitions.

So we have shown that the memory function for all observations either swaps m1 to m2 and m2 to
m1 or is the identity. If the transitions for the 0 observation are the identity then we notice that for
either the − or + observations we reach the final state with the same observation in corridors 2 and 4
or corridors 1 and 3 and so the possible error is 10. If the transitions for the 0 observation transpose
the memory state we have the same result because there is always an odd number of 0 observations
before and after any + or − observation.

So we have shown that for all possible 2-state deterministic memory functions, the agents memory
at the final state is the same for both a corridor giving 10 reward and −10 reward meaning the best
possible Q∗ error is 10, the same as no memory.

Example E.3. Consider an environment where the agent needs to keep track of the multiplicity of the
time step. First, the agent receives a sequence of 0, 1, 2, or 3 ωnull observations followed by a single
ωend observation. At each time step, the agent can only take the action a. After each observation, the
agent receives a reward of 0 unless the observation is ωend and the time step is a multiple of 3. More
specifically, here are the rewards for the following observation sequences:

18



1. R(ωend) = 1

2. R(ωnull, ωend) = 0

3. R(ωnull, ωnull, ωend) = 0

4. R(ωnull, ωnull, ωnull, ωend) = 1

Each of the possible trajectory sequences is equally likely.

A 3-state deterministic memory function is sufficient to achieve 0 reward error in this environment.
Consider three states m1, m2, and m3 that transition in a cycle with 100% probability. Whenever the
memory is in state m1, the initial memory state, the agent can predict a reward of 1 and otherwise
predict a reward of 0. This gives a candidate f which satisfies ∥[f ]φ −Q∗

M∥∞ ≤ εQ∗ .

An agent with no memory could achieve a maximum error of 1/2 by predicting a reward of 1/2 in all
cases.

We now consider the constraints that a 2-state stochastic memory function would need to satisfy in
order to perform better than an agent with no memory. Note that because the agent only has one
available action, we can think of f as a function only of memory. We will also reduce our view to
only the ωend observation because if no f exists which outperforms a memoryless agent over just one
of the observations it also cannot exist over both. Because we are considering only a single action
and a single observation, f becomes a function of only the memory state. This lets us succinctly
express [f ]φ as E(m,ω)∼φ(τ)[f(m)] = P(m1|τ)f(m1)+P(m2|τ)f(m2). For convenience, we write
f = (f(m1), f(m2)).

We now need to determine what Pr(m1) and Pr(m2) would be for a given trajectory. Because the
observation is always ωnull for all time steps before the ωend observation, and because the agents
action is always a, the memory function update reduces to a function of only the previous memory

state. This also lets us express it as a two by two matrix A =

(
p 1− p

1− q q

)
, where p is the

probability of transitioning to m1 when in m1 and q is the probability of transitioning to m2 when
in m2. Now, given a vector representing the probabilities of each memory state, we can find the
corresponding probabilities at the next time step by multiplying this vector by A. Finally, we say the
initial memory state distribution is y = (y1, y2) where y1 is the probability of starting in state m1 and
y2 is the probability of starting in state m2. We can now express the final memory state distribution
of a trajectory of length n as yAn. We can then get [f ]φ, by computing E(m)∼φ(τ)[f(m)] = yAnfT .

Using y, A, and f , we can express [f ]φ, which is equivalently the final predicted reward, for the
terminal states of the four possible trajectories of this environment. If we assume that this 2-stochastic
memory agent is improving, we know that these predictions must be greater or less than 1/2 based
on the true Q∗ value.

1. yfT > 1/2

2. yAfT < 1/2

3. yA2fT < 1/2

4. yA3fT > 1/2

Note that these inequalities are strict because predicting 1/2 would mean that the error of the agent is
at least |1/2− 1| or |1/2− 0| which is not better than a no-memory agent.

From the first two conditions, we get that yAf < yf , and subtracting yf = yIf , where I is the
identity matrix, we get y(A− I)f < 0. From the second two conditions we get that yA2f < yA3f
and subtracting yA2f gives 0 < y(A3 −A2)f . We can calculate A3 −A2 to be (a+ b− 1)2(A− I)
so we get the final condition of 0 < (a+ b− 1)2y(A− I)f .

Because (a + b − 1)2 is positive we have a contradiction. Both 0 < (a + b − 1)2y(A − I)f and
y(A− I)f < 0 cannot be true. This implies that a 2-stochastic memory agent cannot perform any
better than a no memory agent on this environment.
Lemma E.4. If there exists a terminal trajectory, τ , such that |[f ]φ(τ) − R(τ)| ≥ ε for all f :
φ(T )×A → R, then:

19



1. εQ∗ ≥ ε
Because τ is a terminal trajectory Q∗

M (τ) = R(τ) and by the definition of infinity norm
∥·∥∞, we must have that εQ∗ is at least ε

2. εR ≥ ε
By the definition of infinity norm ∥·∥∞, εR must at least be ε

Example E.5. The following counter example is for the following results:

• The existence of 2-stochastic Q* improving memory doesn’t imply the existence of k-
deterministic Q* improving memory.

• The existence of 2-stochastic Model improving memory doesn’t imply the existence of
k-deterministic Model improving memory.

• The existence of 2-stochastic Q* optimal memory doesn’t imply the existence of k-
deterministic Q* optimal memory.

• The existence of 2-stochastic Model optimal memory doesn’t imply the existence of k-
deterministic Model optimal memory.

First we define a virtual MDP with two states s1 and s2 and a parameterized set of actions A =
{ax|x ∈ [−1, 1]}. Actions ax with x >= 0 result in the the following two transitions P (s2|s1, ax) =
x, P (s1|s1, ax) = 1− x, and P (s2|s2, ax) = 1. Actions ax with x < 0 result in the the following
two transitions P (s1|s2, ax) = x, P (s2|s2, ax) = 1−x, and P (s1|s1, ax) = 1. Actions are selected
uniformly at random at each time step.

We now wrap this MDP with a POMDP to produce the desired counter example. The POMDP tracks
the running probability of state s1 and at each time step communicates the action taken in the MDP,
ax, to the agent as observation ox. At each time step the POMDP has a .1 probability of terminating
and presenting the agent with the oend observation. For this observation the reward is equal to the
probability of the MDP being in state s1. The reward for all other observations is 0. The trajectory
terminates after the oend observation. The action space for the agent is A = {a}, a single action for
all time steps.

There exists a 2-stochastic optimal memory which is sufficient to predict the reward at each time step.
Specifically, we take the memory function which for observations transitions its memory states m1

and m2 in the same way as the virtual MDP transitions its states s1 and s2 at each time step. This is
Q∗ optimal. f can be chosen such that f((m1, oend), a) = 1 and f((m2, oend), a) = 0 which gives an
Q∗ error of 0 for terminal trajectories. For non-terminal partial trajectories we note that the true future
return is independent of the actual time step because there is no time dependence for transitions nor
termination. This lets us define R̂(s1) to be the future discounted rewards if the current MDP state is
s1 and R̂(s2) to be the future discounted rewards if the current MDP state is s2. We can then choose
f((m1, ox ̸= oend), a) = R̂(s1) and f((m2, ox ̸= oend), a) = R̂(s2) which also gives εQ∗ = 0. This
is because P (m1|τ) = P (s1|τ) and P (m2|τ) = P (s2|τ) so when lifting for a given trajectory τ we
get P (m1)∗f((m1, o ̸= oend), a)+P (m2)∗f((m2, o ̸= oend), a) = P (s1)∗ R̂(s1)+P (s2)∗ R̂(s2)
which is exactly the true future discounted reward.

Following similar reasoning, this memory function is also Model optimal. For terminal trajectories
fR can match f and for non-terminal trajectories fR((·, o ̸= oend), a) = 0 which gives εR = 0. For
transitions, the probability of oend is always .1 and the probability of the observations ox follows
U(−1, 1) ∗ .9 which gives a natural choice of fP with εP = 0.

No memory can at best achieve εQ∗ = 1/2 and εR = 1/2 because the true reward at the final
observation can be either 0 or 1 and f(oend, a) can at best be assigned to the middle of this range to
minimize error.

We now consider a k-deterministic memory function µ, with corresponding . Lets assume that
exists function f : φ(T ) × A → R such that ∥f(φ(τ))−R(τ)∥∞ ≤ ε < 1/2. Note that this is
identical to the terminal trajectory requirement for f in Lemma E.4. For simplicity we can exclude
the observation and action, which are always oend and a respectively, to get an identical f : M → R.
We now prove by contradiction that such f cannot exist.

20



For each memory state mi we define Si = {τ |φ(τ) = mi, τ is terminal} and R(S) = {R(τ)|τ ∈ S}.
Let S, generated by memory state m, be the set for which supR(S) − inf R(S) ≥ supR(Si) −
inf R(Si) for all Si. The best choice of f(m) is (supR(S) + inf R(S))/2 because for all τ ∈ S,
|f(m)−R(τ)| ≤ (supR(S)− inf R(S))/2 ≤ ε < 1/2. This implies that supR(S)− inf R(S) ≤
2ε < 1. Either inf S > 0 or supS < 1. Without loss of generality, assume that inf S > 0.

We now consider an arbitrary trajectory τ and define the operation τ ⊕ ox for observation ox which
generates a new terminal trajectory by inserting the observation ox before oend in the trajectory. Notice
that for any τ1, τ2 ∈ S and ox, we have that φ(τ1 ⊕ ox) = φ(τ2 ⊕ ox) = µ(m, a, ox). We also have
that for positive x, R(τ ⊕ ox) = (1− x)R(τ) as defined by the probability of transitioning from s1
to s1 in the virtual MDP.

For any choice 0 < ε′ < 1
4 supR we can choose τ1, τ2 ∈ S and ox such that supR(S)−R(τ2⊕ox) =

ε′ and R(τ1 ⊕ ox) < inf R(S). First we pick τ2 ∈ S such that supR(S) − R(τ2) = δ < ε′,
for δ ∈ R, which gives R(τ2) = supR(S) − δ. This then means we can choose x = 1 −
(supR(S)−ε′)/(supR(S)−δ) which gives the desired supR(S)−R(τ2⊕ox) = ε′. The condition
0 < ε′ < 1

4 supR ensures x ∈ (0, 1]. We can now choose τ1 ∈ S such that R(τ1) − inf R(S) =
δ′ < x

1−x inf R(S) which reduces to the desired R(τ1)(1 − x) < inf R(S) which is equivalent to
R(τ1 ⊕ ox) < inf R(S).

We now consider a sequence of choices of ε′, ε1, ε2, . . . , such that εi = εi−1/2. For each choice of
epsilon εi we have τ1,i, τ2,i ∈ S and ox such that supR(S)−R(τ2,i ⊕ ox) = ε′ and R(τ1,i ⊕ ox) <
inf R(S). Let mi = φ(τ1,i ⊕ ox) = φ(τ2,i ⊕ ox) for each εi. For the infinite sequence of mi,
there must be some particular m̂ that repeats infinitely many times. Let m̂ generate Ŝ and I

be the set of {i|mi = m̂}. For the pairs τ1,i ⊕ ox, τ2,i ⊕ ox ∈ Ŝ, we have that inf R(Ŝ) ≤
infi∈I R(τ1,i ⊕ ox) < inf R(S) and supi∈I R(τ2,i ⊕ ox) = supR(S) ≤ supR(Ŝ). This implies
that supR(Ŝ)− inf R(Ŝ) > supR(S)− inf R(S) which contradicts the definition of S. So we have
that ∥f(φ(τ))−R(τ)∥∞ ≥ 1/2 and by Lemma E.4 we have that εQ∗ ≥ 1/2 and εM ≥ 1/2.
Example E.6. We can consider a simpler but related counter example to E.5 to prove only the optimal
cases:

• The existence of 2-stochastic Q* optimal memory doesn’t imply the existence of k-
deterministic Q* optimal memory.

• The existence of 2-stochastic Model optimal memory doesn’t imply the existence of k-
deterministic Model optimal memory.

We first define a virtual state machine with two states s1 and s2. The initial state is s1 and at each
time step there is a 10% chance of s1 transitioning to state s2. The state s2 always transitions to itself.

We now consider a POMDP with two observations o and oend and one action a which wraps the
virtual state machine. At each time step the agent receives observation o and when the agent takes its
action a the virtual state machine is updated. At each time step there is a 10% chance of the trajectory
terminating in which case the agent receives the oend observation and the following reward is equal to
the probability of the virtual state machine being in state s1. All other rewards are 0.

There exists a 2-stochastic optimal memory which is sufficient to predict the reward at each time
step. Specifically, we take the memory function which for observations transitions its memory states
m1 and m2 in the same way as the virtual MDP transitions its states s1 and s2 at each time step.
This is Q∗ optimal. f can be chosen such that f((m1, oend), a) = 1 and f((m2, oend), a) = 0 which
gives an Q∗ error of 0 for terminal trajectories. For non-terminal partial trajectories the value of f
for each memory state can be adjusted based on the probability distribution of time steps before the
environment terminates. This memory function is similarly Model optimal. For terminal trajectories
fR can match f and for non-terminal trajectories fR((·, o ̸= oend), a) = 0 which gives a model
reward error of 0. For transitions, the probability of receiving the next observation is always fixed so
the choice of fP is trivial.

Note that an agent with no memory, upon getting the terminal observation oend can at best guess the
center of the range of possible rewards [1, 0) and so has εQ∗ ≥ .5 and εR ≥ .5 by Lemma E.4.

We now consider a k-deterministic memory agent. At the final observations there are an infinite
number of possible rewards that the agent may receive in the range [1, 0). However, because there

21



are only k memory states, f((mi, oend), a) can only take on k possible values, one for each mi. By
pigeon hole, there must exist at least one terminal trajectory, τ for which |f(τ)−R(τ)| > 0. This
then implies that εQ∗ > 0 and εR > 0 by Lemma E.4. So, no k-deterministic memory function
exists.

F Infinity Norm to Expected Case

Here we explain the relationships between the infinity norm and expected cases.

First, we show model error being zero implies the agent’s memory makes the gives a Markov
representation of the MDP. Suppose that the the model error definition

∃fP : φ(T )×A → ∆Ω.∥[fP ]φ − Po∥1 < εP

is satisfied for εP = 0. Then,

∃fP : φ(T )×A → ∆Ω.[fP ]φ = Po

where Po = P(·|τ, at). This says that given φ(τt) = (mt, ωt) and at, the agent can predict
the distribution over next observations ωt+1 ∼ P(ωt+1|τt, at) perfectly. Thus, P(ωt+1|τt) =
P(ωt+1|mt, ωt, at), which is the definition of memory yielding a Markov representation. Model error
being zero implying that rewards are Markov follows similarly.

Second, we show the connection between π∗-preservation and expected return. Observe
∣∣∣E
τ
[V

[π]φ
M − V ∗

M ]
∣∣∣ ≤ E

τ

∣∣∣V [π]φ
M − V ∗

M

∣∣∣ ≤
∥∥∥V [π]φ

M − V ∗
M

∥∥∥
∞

≤ επ∗

where the first inequality follows by Jensen’s inequality. Thus, if there exists a π : φ(T ) → ∆A
such that the final inequality follows (which is, by definition, π∗-preservation), then for this π, the
expected return is also constrained.

Third, the relationship between Q∗-preservation and expected value error of π∗ in the text from
Sutton and Barto [2018] is similar. Recall the expected value error definition, defined in the context
of function approximation, where µ is some distribution over states, v̂ is the function approximator
value function, w is the approximated state, and vπ(s) is the true value of state s under the policy π:

V E(ω) := µ(s) [vπ(s)− v̂(s, w)]
2

and recall the Q∗-preservation definition:

∃f : φ(T )×A → R.∥[f ]φ −Q∗
M∥∞ ≤ εQ∗

To get from Q∗-preservation to expected value error for π∗, we must: First, define Q∗-preservation
with a 2-norm over outputs rather than ∞-norm (notated as ∥·∥∞,2 to show that a max is still taken
over inputs) to get

∃f : φ(T )×A → R.∥[f ]φ −Q∗
M∥∞,2 ≤ εQ∗

Second, consider only state-values instead of state-action values:

∃f : φ(T ) → R.∥[f ]φ − V ∗
M∥∞,2 ≤ εV ∗

Third, take an expectation over τ rather than a maximum over τ .

G Expected Case Proofs

Here we restate Theorem 4.1 as given in the main text.
Lemma G.1. Let µ∗

k be a k-state stochastic finite automata that will serve as a memory function
in a POMDP. For any POMDP with bounded reward and for all ε, there exists a k′-DFA which
achieves an expected return that is only ε less than µ∗

k. Furthermore, it is sufficient to choose
k′ ≥ k ln(ε(1− γ)/Rmax)/ ln(γ) where Rmax is the bound on reward and γ is the discount factor.

This result is used for the following individual results:

• The existence of 2-stochastic Expected Return improving memory doesn’t imply the exis-
tence of k-deterministic expected return improving memory.

22



• The existence of 2-stochastic Expected Return optimal memory doesn’t imply the existence
of k-deterministic expected return improving memory.

Proof. Let µ∗
k be the given k-SFA memory function with the corresponding policy π∗. Let µ̂k′ be

the k′-DFA memory function with corresponding policy π̂.

For a given POMDP, let τt be a trajectory in the environment of states, observations, memory states,
actions and rewards up to time step t where memory state mt is being chosen. Let the observation,
memory states, and rewards for a time step t be ωt, mt, and rt, respectively.

For a given τt, we define Gπ,µ(τt) as the expected sum of discounted rewards for trajectories that
start with τt and then proceed according to the policy π and memory function µ.

Gπ,µ(τt) = E
τ |τt

[ ∞∑

i=t

γi−tri

]

We then define Gπ,µ(mt, τt) as the expected sum of discounted rewards for trajectories that start
with τt, transition to memory state mt at time step t, and then proceed according to the policy π and
memory function µ.

Gπ,µ(mt, τt) =
∑

τt+1

P(τt+1|τt,mt)Gπ,µ(τt+1)

where P(τt+1|τt,mt) is the probability of a trajectory of length t+1 given that it starts with trajectory
τt of length t and that the memory state at time step t is mt given the policy π.

Let P (m′|m, a, ω) be the probability distribution for the transitions of the memory function µ.
This gives P ∗(m′|m, a, ω), the probability distribution of the stochastic memory function µ∗

k, and
P̂ (m′|m, a, ω), the probability distribution of the deterministic memory function µ̂k′ .

For any time step t we can write the expected return of the stochastic policy as:

Gπ∗,µ∗
k
= E

τt

[ ∑

mt∈M

P ∗(mt|ωt, at−1,mt−1)Gπ∗,µ∗
k
(mt, τt)

]

Because M is finite, there must exist a m̂t such that for all possible mt ∈ M

Gπ∗,µ∗
k
(m̂t, τt) ≥ Gπ∗,µ∗

k
(mt, τt)

We then let P̂ (m̂t|ωt, at−1,mt−1) = 1 and have p̂ be 0 for all other mt. This guarantees that

E
τt

[ ∑

mt∈M

P ∗(mt|ωt, at−1,mt−1)Gπ∗,µ∗
k
(mt, τt)

]
≤ E

τt

[ ∑

mt∈M

P̂ (mt|ωt, at−1,mt−1)Gπ∗,µ∗
k
(mt, τt)

]

Note that such assignment of P̂ is equivalent to a deterministic memory function. So we have that for
a particular time step t the memory state can be chosen in a deterministic way to achieve the same or
better expected return when compared to choosing the memory state according to µ∗

k

The same argument can be made inductively, conditioning on a finite initial trajectory τstart. We can
consider longer and longer starting trajectories and in each case we can deterministically assign P̂ to
achieve the same or better expected return when compared to µ∗

k.

E
τt|τstart

[ ∑

mt∈M

p∗(mt|ωt,mt−1)Gπ∗,µ∗
k
(mt, τt)

]
≤

E
τt|τstart

[ ∑

mt∈M

p̂(mt|ωt,mt−1)Gπ∗,µ∗
k
(mt, τt)

] (1)

23



where Eτt|τstart
is the expectation over trajectories τt that start with τstart. Importantly, this holds

only for finite trajectories τstart. Consider picking the memory states deterministically as described
for trajectories τstart of increasing length. Equation 1 will continue to hold and at some finite point
the Gπ∗,µ∗

k
(mt, τt) term will become epsilon small due to the bounded reward. This means that a

deterministic memory can achieve the same or better expected return compared to the stochastic
memory function for a finite number of time steps t and after is ε close. To achieve this however,
we need to distinguish identical observation, action, memory state pairs that might occur when
considering trajectories of different lengths. To remedy possible conflicts that would prevent always
selecting the optimal memory transitions, we can augment the memory with the current time step t.

We construct µ̂k′ by making t copies of each memory state in µ∗
k, one for each of the first t time steps.

So for a given memory state m from µ∗
k we now have mt for each time step t. The policy π̂ can be

defined to return the same action as π∗ for each of the t duplicates of a given memory state, ignoring
the time step. We then construct µ̂ as described above by taking the best choice of memory state
transition at each time step ensuring that Gπ∗,µ∗

k
≤ Gπ̂,µ̂k′ .

This gives us a k′-deterministic memory function with k′ = k ∗ t. To guarantee Gπ∗,µ∗
k
−Gπ̂,µ̂k′ < ε

for a given ε we can consider the worst case which would be a difference of Rmax right after the
first t time steps. This gives the expression Rmaxγ

t(1 + γ + γ2 + . . . ) ≤ ε which means it is
sufficient to take t greater than ln(ε(1− γ)/Rmax)/ ln(γ). This works because once the deterministic
memory function matches the performance of the stochastic memory function for all trajectories of a
sufficiently large finite length, all further rewards are negligibly small due to the discount factor γ.

H Expected Case Counterexamples

Example H.1. The following counter example is for the following results:

• The existence of k-deterministic expected π∗ optimal memory doesn’t imply the existence
of 2-stochastic π∗ optimal memory

• The existence of k-deterministic expected π∗ improving memory doesn’t imply the existence
of 2-stochastic π∗ improving memory

Consider an environment where the agent is first shown an integer observation ωi between 1 and
k, and then a recall observation, ωrecall. At the recall observation, the agent can either take the aexit
action to receive a reward of 0, or an action a1, a2, a3, . . . ak corresponding to one of the possible
observations it received. If the agent selects the correct action it receives a reward of 1 and otherwise
−k.

An agent with k memory states can update the memory state based on the first observation ωi,
µ(·, ωi, ·) = mi. We then have the policy π(mi, ωrecall) = ai which achieves an expected return of 1.

Now, consider an agent with 2 stochastic memory states, M = {m1,m2}, which doesn’t take the
exit action. We have two steps that occur probabilistically, the selection of the memory state and
the selection of the action. We can write the probability of a particular action in terms of the initial
observation as P (ai|oj). When i = j the agent took the correct action and gets a reward of 1 and
otherwise, it gets a reward of −k. This means we can write the expected return as

24



Expected Return =
1

k

k∑

i=1

1 ∗ P (ai|ωi)− k(k − 1)(1− P (ai|ωi)) =

=
1

k

k∑

i=1

P (ai|ωi)(1 + k(k − 1))− k(k − 1)

= −k(k − 1) +
1 + k(k − 1)

k

k∑

i=1

P (ai|ωi)

We have that P (ai|ωi) = P (ai|m1)P (m1|ωi)+P (ai|m2)P (m2|ωi) and because
∑k

i=1 P (ai|m) =

1 for all m we can bound
∑k

i=1 P (ai|ωi) =
∑k

i=1 P (ai|m1)P (m1|ωi) + P (ai|m2)P (m2|ωi) ≤
maxiP (m1|ωi) + P (m2|ωi) ≤ 2.

For k ≥ 3 this gives:

Expected Return ≤ −k(k − 1) +
1 + k(k − 1)

k
2

≤ −k(k − 1) +
1

k
+ 2(k − 1)

≤ 1

k
+ (2− k)(k − 1) ≤ 0

This means that taking the exit action aexit is always optimal for the 2 stochastic memory function
and this matches the expected return of no-memory.

This counter example shows that the existence of k-deterministic memory doesn’t imply the existence
of 2 stochastic. By set inclusion this also gives us that k-stochastic memory doesn’t imply 2-
stochastic memory, k-deterministic memory doesn’t imply 2-stochastic memory, and k-stochastic
memory doesn’t imply 2-deterministic memory. Because we have that the k-deterministic memory is
optimal and the 2-stochastic memory is not improving we have that this example extends to both the
optimal and improving tables.

25


	Introduction
	Background
	Memory functions and state abstraction
	Trajectory MDP and Abstraction Definitions
	Optimal and improving memory functions

	Relationships between classes of memory functions
	Target: state abstraction hierarchy
	Stochasticity and number
	Quality: Improving/optimal

	Related Work
	Future Work
	Conclusion
	Limitations
	Broader Impacts
	Abstraction Hierarchy
	model-preservation implies Q*-preservation
	Q*-preservation implies pi*-preservation

	Abstractions to Memory Functions
	Counterexamples
	Infinity Norm to Expected Case
	Expected Case Proofs
	Expected Case Counterexamples

