Viterbi Decoders

Cam Allen

Very useful application of Viterbi
Algorithm for Hidden Markov Models.

Hidden Markov Models

Sequence of states at discrete time
steps. The hidden part means we can’t
see the states directly. Only can see
observations. We typically assume we
know how the system transitions from
one state to next, plus what
observations are likely given each state.

The Problem

* Have: Sequence of observations {01, 02, ..., On}

» Want: Sequence of states {s1, so, ..., Sn}

Find most-likely explanation (sequence of states)
for observations about a Hidden Markov Model

Example: Office Lighting

Example: Office Lighting

Example: Office Lighting

Observe:

Example: Office Lighting

Observe:

Explanation:

OO QOO
OOOE ©OEOE:

Trellis Diagram

In order to visualize how the Viterbi
Algorithm works, we’ll make use of
something called a trellis diagram.
Observations on the top. States and
transitions are below that. Here we’re
multiplying the probability of each state
(50/50) times P(our_observation | state).

More specifically, we’re using Bayes
Trellis Diagram Rule. Usually when you do this, you
normalize by the probability of the
observation, but here we only care
about the maximum, so I’m skipping
that part.

" We fill in the states with their
probabilities, and then we move on to
the next time step.

We have the same observation again,
so, starting with the probabilities we just
calculated, we multiply by the
probability of each state transition, times
the probability of the observation given
the state we end up in.

Trellis Diagram

14 And then we update our state
probabilities again.

15 In the next time step we get a different
observation, so the calculations change
slightly

Trellis Diagram

Trellis Diagram

O~
0><0>SQ

Trellis Diagram

Trellis Diagram

Trellis Diagram

O~
‘X;z;z;

And finally we finish our trellis diagram.
Now we look at the last two states and
see which has the higher probability.
That’s where we end up.

Trellis Diagram

O—EO—E—E
‘X;X‘/

We cross out the other state, and move
backwards.

Trellis Diagram

OO0
X/

22

At each time step, we pick the state with
the highest probability

Trellis Diagram

OO0

e /
\

Trellis Diagram

Until finally we have our entire path. This
is called the Viterbi path, and it’s the
most likely explanation for the
observations.

Example: Office Lighting

Observe:

Explanation:

OO0 QOO
OOOE ©OEOE:

Now we can answer our question

Example: Office Lighting

Observe:

Explanation:

So basically, if the lab had a lighting
controller like this, maybe the lights
would stop randomly shutting off while
I’m working causing me to wave my
arms around frantically.

Example: Communications

re

p o)
=,
v} N
o
b

A
xn

Another great use for the Viterbi
Algorithm is in communications. This is
a picture of Voyager 1 — one of several
deep-space probes that used the
algorithm for communications to and
from Earth

Example: Communications

Hello, Hello,
Earth! Earth!

[image.jpg] limage.jpg]

Typically communications works like
this. You have some message, and you
want to send through space back to
Earth.

29 Normally we first convert the message
Example: Communications to binary
Hello, Hello,
Earth! Earth!
[image.jpg] [image jpg]
30

Example: Communications

Hello, Jellw,
Earth! Marth!

[image.jpg] [im#g~.jp*]

The problem is that usually the message
gets corrupted by noise along the way

Example: Communications

To solve this problem, we’ll use

Examp|e: Communications something called an error correcting
code. Basically, instead of transmitting
* Error-Correcting Codes the white bits, we send them through an
encoder to get the blue bits. The blue
. Space bits contain extra information that helps

recover the message.

I’ll get to the decoder in a minute, but

Examp|e: Communications first I’ll explain what’s going on in the

encoder.
* Error-Correcting Codes

Space . h

Convolutional Encoder

Input: (110001010101010000...

Output: 110001

The encoder operates on groups of 3
bits at a time.

Convolutional Encoder

Input: 1(10001010101010000...

Output: 110001

Convolutional Encoder

Input: 1(10001010101010000...

|

10

Output: 110001

Convolutional Encoder

Input: 1(10001010101010000...

|

10

Output: 11000110

37

You slide this 3-bit window over by 1,
and it produces 2 output bits

Convolutional Encoder

Input: 110001010101010000...

Output: 11000110

38

Convolutional Encoder

Input: 110001010101010000...

Output: 11000110

Convolutional Encoder

Input: 110001010101010000...

Output: 11000110

Slide it over by one more bit, and you
get another 2 bits out. This is a rate 1/2
encoder, because it produces twice as
many bits of output as it gets input.

Convolutional Encoder

Input: 110(001)010101010000...

Output: 1100011000

Convolutional Encoder

Input: 110(001)010101010000...

Output: 1100011000

Convolutional Encoder

Input: 110(001)010101010000...

Output: 1100011000

Convolutional Encoder

Input: 110001010101010000...

Output: 110001100011

Convolutional Encoder

Input: 110001010101010000...

Output: 110001100011

Convolutional Encoder

Input: 110001010101010000...

Output: 110001100011

Convolutional Encoder

Input: 11000(101)0101010000...

Output: 110001100011 11

Convolutional Encoder

Input: 11000(101)0101010000...

01

Output: 110001100011 11

Convolutional Encoder

Input: 11000(101)0101010000...

01

Output: 1100011000111101

If we move this stuff out of the way, we

Convolutional Encoder can draw a state diagram for what’s

going on here

Input: 110001010101010000..

Output: 1100011000111101

Convolutional Encoder

Convolutional Encoder

@ © O ©

Each of these states corresponds to
something our 3-bit window might see

Convolutional Encoder

M @

/‘\ I\

CO\/Q —(© /@9

@ @

We can draw in the transitions with
arrows

Convolutional Encoder
@)
/ 0 1 \

| 4 N A
-
0

\ /
‘ D@ | 1
@ | O+@ | @

Each transition represents one of the
two possible input bits.

Convolutional Encoder

DN
0\1\ jesscl | ez
O

Each transition also produces two
output bits

Convolutional Encoder

O ©
/‘ ‘\

"
@ ‘ oi¥c | 1
A=) /‘ ‘\ ()

EN A
@

Convolutional Encoder
9

| /\% /\ o
DN AN 7

-_—
0

Now if we start in state 110, we can re-

run our input and visualize the encoder
state

Convolutional Encoder
(09

PO
0\1\ jesscl | ez
o)

Convolutional Encoder
(09

O ©
/‘ ‘\

"
@ ‘ oi¥c | 1
A=) /‘ ‘\ ()

EN A
@
O

Convolutional Encoder
(09

DN
0\1\ jesscl | ez
O

Convolutional Encoder
)

DN
@ \ jesscl | ez
O

00

Convolutional Encoder
)

| /\% /\ o
A7 AR

00

1
0

-_—
0

Convolutional Encoder
)

DN
0\1\ jesscl | ez
O

Convolutional Encoder
D),

(=) ‘ @)
S T
\

1

"
@ ‘ oi¥c | 1
A=) /‘ ‘\ ()

EN A
@

Convolutional Encoder
D),

P PN
Q| o+ | o
(@)W

1

Convolutional Encoder
D),

S 9
0\1\ jesscl | ez
O

Convolutional Encoder
G0

() ()
/‘ ‘\

o p
@ ‘ D@ | 1
A=) /‘ ‘\ ()

EN A
@

Convolutional Encoder
G0

S
0\1\ O@, | ez
&

Convolutional Encoder
G0

DO
0\1\ Jsscf | ez
O

Convolutional Encoder

(@)
©
@@
A R

"
@ ‘ D@ | 1
A=) /‘ ‘\ ()

EN A
@

Convolutional Encoder
- o
@)
ST TN
N LA SLA
()

01

Communications 101

So that’s the encoder

Communications 101

. . Space .

We still need to get our message
through space

Communications 101

. . Space . |

And then decode the noisy results to get
our message back out.

Now we’ll look at the decoder.

Communications 101

Communications 101

The Problem

Have: Want:

Sequence of observations Sequence of states

* Viterbi Decoder:
Find most-likely original transmitted message for
a given set of noisy observed bits

Trellis Diagram

©JORO)
©O®
@O ®

)

RO FEO®

/N
X

/9\
\
X
X

\
[X
©
/A

\

TOO®
TOO®

/G\\G ®

7
\
4 \

QEOG

4

GROGO

4

(8)
AERLOEG

Q
FRO®

©)
GeOG

79 We’re going to do the same thing as
before, but this time the trellis diagram is
a lot more complex.

Branch Metric

Observation
01 10

\
&

¥

Explanation

@99@@\66@
@OOTOO®

|
©

We’re also going to make use of a few
optimizations. Instead of computing
conditional probabilities, we’re going to
just compute the Hamming distance
between the observation and each
explanation. Order stays the same, it’s
just simpler.

Branch Metric

Observation
01 10

\
&

¥

Explanation

@\ /@
@/ \®
©)

|
©

Explanation

Branch Metric

l

Observation

@99/@6666

)
©)

Path Metric

®
!
®

" X XO,
OG0

Path
scores

The other optimization is that instead of
multiplying out our probabilities, we’ll
just add the Hamming errors for each
branch. Again, all we care about is the
most likely path, and this will give the
same result. We take our path scores,
and add the branch metrics.

Path Metric

®
N

Path
scores

Updated
scores

" X XO,
ONOX - X/

84

Then we compare the results, and select
the better score as our next path metric.

Trellis Diagram

/N

g?ee

©EO®

©10)0)

SlofoctoLo10N0
:

TOO®
TOO®

jejele
\

5%

5

/N

[

@ /@
©

4

QEOG

4

GROGO

RO
elejele)

©)

Now we can go back to the trellis
diagram, and start calculating.

Viterbi Decoder

o

9@9\9699

At the first time step, we observe a '11".

Viterbi Decoder

We compute initial branch metrics, and
those give us our starting path metrics.

.@.....@ .@.....@@.@

A L oedd el AN

/k\ /k\ /k\

Viterbi Decoder
Viterbi Decoder

©
T
O
O
@
A
2
o
=
=

OXCJOXOX X K- ¥ J

DNSTFALA

00000000

OJCJOXOJOXOXOJO,

VAN

/
00508 ® e

EAROBEEG

NS

000000006

A NS A

OX:- L X:X XO¥ X) OX:- L X:X JO¥ X) OX:- L X:X XO¥ X)

N/ N/ N/

Viterbi Decoder
Viterbi Decoder

©
T
O
O
@
A
2
o
=
=

©
T
O
O
@
A
=
o
=
=

00000000

VAN

/
60600000

NS A

00000000

NS A

OX:- L X:X XO¥ X)

N/

Viterbi Decoder

00000000

[NATSL]

OXCIOXOX X X: ¥ J

NS A

000000006

NS A

OX:- L X:X JO¥ X)

N/

Viterbi Decoder

7 00000000

[NASSL A

OXCJOXOX X X: ¥ J

NS A

00000000

NS A

OX:- L X:X XO¥ X)

N/

©
T
O
O
@
A
=
o
=
=

00O

VAN

</
7 00080000

[NASSL A

OXCJOXOX X X: ¥ J

NS A

00000000

NS A

OX:- L X:X XO¥ X)

N/

Viterbi Decoder

EAROBEEOG

NS A

7 000000090

[NASSL A

OXCJOXOX X K- ¥ J

NS A

000000006

NS A

OX:- L X:X JO¥ X)

N/

Viterbi Decoder

- NOX : KONOX X ¥

NS A

7 00000608

[NASSL A

OXCJOXOX X X: ¥ J

NS A

00000000

NS A

OX:- L X:X XO¥ X)

N/

100

©
T
O
O
@
A
=
o
=
=

COHOHBOHHO

SN

/
00065006

NS A

7 00000000

[NASSL A

OXCJOXOX X X: ¥ J

NS A

00000000

NS A

OX:- L X:X XO¥ X)

N/

101

Viterbi Decoder

ofofefeleYeleYe

AL

0000000

RSN

7 000000090

[NASSL A

OXCJOXOX X K- ¥ J

NS A

000000006

NS A

OX:- L X:X JO¥ X)

N/

102

Viterbi Decoder

00000000

/NN

0000000

NS A

7 00000608

[NASSL A

OXCJOXOX X X: ¥ J

NS A

00000000

NS A

OX:- L X:X XO¥ X)

N/

103

©
T
O
O
@
A
5
o
=
=

ofcJofejeYeleYe

VAN

</
@@@@90@@

/NN

0000000

NS

00000000

[NASSL A

OXCJOXOX X X: ¥ J

INSTFALA

00000000

NS

OX:- L X:X XO¥ X)

N\

104

Viterbi Decoder

ofoJefejoYeleYe

A A

Y- fo¥escTorcy)

/NN

0000000

NS

00000000

[NASSL A

OXCJOXOX X K- ¥ J

INSTFALA

000000006

NS

OX:- L X:X JO¥ X)

N\

Now our trellis is complete, and we can
trace back through it to find the optimal

path.

105

Viterbi Decoder

00000000

AV

0000500

/NN

0000000

NS

00000000

[NASSL A

OXCJOXOX X X: ¥ J

DNSTFALA

00000000

NS

OX:- L X:X XO¥ X)

N\

106

©
T
O
O
@
A
=
o
=
=

o
00000000

/NN

0000000

NS

00000000

[NASSL A

OXCJOXOX X X: ¥ J

INSTFALA

00000000

NS

OX:- L X:X XO¥ X)

N\

107

Viterbi Decoder

©
- NOX : KONOX X ¥)

NS

00000000

[NASSL A

OXCJOXOX X K- ¥ J

INSTFALA

000000006

NS

OX:- L X:X JO¥ X)

W

108

Viterbi Decoder

©
©
OXOX : XOX XOX J -]

[NASSL A

OXCJOXOX X X: ¥ J

DNSTFALA

00000000

NS

OX:- L X:X XO¥ X)

N\

109

©
T
O
O
@
A
5
o
=
=

:

®

S —e/\@
OO ®
/'

%‘@4.

y

110

Viterbi Decoder

©
T
O
O
@
A
5
o
=
=

112 This is the most likely path through the
Viterbi Decoder trellis

113

Viterbi Decoder

Viterbi Decoder

® -0 000 0 0 0

Viterbi Decoder

You can see the error correcting part is
Viterbi Decoder working. The 3rd observation "00" was
most likely caused by a "01" transition
instead. Now, each one of these arrows
corresponds to a bit from the original
message.

17 We can go back to the encoder state
Convolutional Encoder diagram to see which bit goes with each

arrow.
1

0
]

Viterbi Decoder

® -0 000 0 0 0

And then we can fill in the arrows to see

Viterbi Decoder what our message was.

1 1 0 o 0 1 0
— —

120 And if you don’t remember, this
Viterbi Decoder message matches what we originally

sent.

1 1 0 o 0 1 0
— —

1100010... ¥

121 So that’s the basic version of the Viterbi
Viterbi Decoder Decoder... There are a few variations.
Have: Want:
Sequence of observations Sequence of states
122 Streaming decoders allow you to do a
Streaming Decoder 1-way streaming link, like for continuous
sensor data
Have: WETR
.01001000011..
Streaming Original message
observations stream
123 Soft decision decoders are more

Soft-Decision Decoder

Have: Want:

W _ Decode .01001000011...

Original message

Voltage levels stream

accurate. Here we have voltage levels
from our antenna, and we want our
original message stream. We could draw
a line through the middle - call
everything above it a 1, everything
below a 0. (or...)

We can represent our observations as
probability distributions. This allows you
to give observations more weight when
they have less uncertainty

Remember, the goal is to be able to
send messages robustly through a noisy
channel

124
Soft-Decision Decoder
Have: Want:
L L
Streaming observation Original message
probabilities stream
125
Example: Communications
Hello, Hello,
Earth! Earth!
[img.jpg] [img.jpg]
126

BDEIENREIER

Voyager Modern Satellites

* Much higher rates
(~200 Mbps)

* Low rate: 160 bits/sec

* High rate: 115.2 kbps

| worked on a project before coming to
Duke where we needed to increase the
throughput of a Viterbi decoder so we
could handle higher data rates.

127 The problem was that our decoder

INncreasin g Throu g N 0 ut could only handle data rates up to 50
Mbps
i N Viterbi
11000010001111 —_— Decoder —_— 01001000011
oitsrsiggﬁws Original message
[40 Mbps] \ [20 Mbps]
128 The final version needed to sustain
|nCreaS|ng Throughput several hundred Mbps.
Viterbi
R — Decoder — ...01001000011
oitsrsiggﬁws Original message
[Max: 50 Mbps] [25 Mbps]
129 Normally what you’d do in a situation

like this is you’d just split the data as it
comes in, send to different decoders,
and combine the outputs

Increasing Throughput

Viterbi
Decoder

— ...00011011000...

Viterbi
Decoder

— ...00101011011...

Viterbi
Decoder

— ...01001000011...

130 Not going to work here

Increasing Throughput

Viterbi
Decoder

—> 400011011000...

_
o010 —| VNPT L soi01011011.

DgloNer

Viterbi
Decoder

— . 9Q1001000011...

131 Remember, each decoder needs to keep

track of state histories. Splitting up the
data won’t give you the right results.

o |— ...00011011000...

o* |— ...00101011011...

— ...01001000011...

132

Increasing Throughput

» Common parallelization techniques insufficient
- Hysteresis
- Streaming data, not block data

» Performance requirements — soft decisions
- Published decoders used hard decisions

* Not enough time to rewrite existing decoder

133

Increasing Throughput

o | Viterbi 001000011,
Decoder
Streaming

. Original message
observations 9 9

To solve it, we ended up doing
something similar to our original plan.

134

Increasing Throughput

1101
1 —| FFo | =] Vit || fro | — . ot001000011
Decoder

But we added these FIFOs on each end

135

Increasing Throughput

1101
. —| FFo |—] Vitebi 1| Fro | — - ot00t000011...
Decoder

136

Increasing Throughput

Viterbi [FIFO —».moowoooom
Decoder
Viterbi [FIFO H.owomonomw
Decoder
viterdi | | eie0 | — 1001000011
Decoder

And we used multiple decoders, but we
didn’t split the data up like we did
before...

137

Increasing Throughput

Decoder 1:

Decoder 2:

Decoder N:

Overlapping Overlapping
symbols symbols

Instead, | came up with a novel
method which sent overlapping,
consecutive samples to multiple
decoders at same time, and then
rotated batches of samples through
the decoders in sequence

138

Increasing Throughput

FIFO viterbi 1| £Eo |— - ot001000011
Decoder

FIFO Viterbi: | miro | — 01001000011
Decoder

FIFO Viterbi | _, FIFO |— ...01001000011.
Decoder

Doing this effectively initializes each
with enough state history information
to recover a piece of the original
message. By combining the pieces,
we could reproduce the entire
message

0110001
001

Using this method, we able to meet
arbitrarily high throughput requirements,
and meet our project deadline, without
needing to rewrite our existing decoder

139
0111010101
: Viterbi
Decoder — ...01001000011
Streaming .
observations Original message
[120 Mbps] M bps [60 Mbps]
140

References

MIT Lecture Notes — Digital Communication
Systems

. — Convolutional Coding
. — Viterbi Decoding of Convolutional Codes

Wikipedia

